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Ocena algorytmu klasyfikacji

Na ile algorytm nauczony na podstawie proby uczgcej bedzie zdolny do

prawidtowej predykcji klasy nowych wektoréw danych?

Y Przestrzen
wektorow danych

——
Uczenie klasyfikatora ‘ K|asyﬁkator
Btad na probie uczacej ! ‘ Btad na prébie testowe]

Ryzyko empiryczne

Zerojedynkowa funkcja 10 Aproksyma_cja btedu
straty (ang. 0-1 loss _+ . rzeczywistego
function) Remp () = Q le‘ F(x,a) yi‘ (ryzyka wtasciwego)

Eksploracja danych, Ocena kiasyfikacji

M0 Politechnika todzka
Instytut Elektroniki 2
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Przedziat ufnosci

Przyktad

Poprawnosé klasyfikacji f = 75% ‘ Jaki jest rzeczywisty wskaznik sukcesu S$*?

Przedziat ufnosci 1

Jak blisko tej

Q=1000 = s e (73.2%,76.7%) wartosci jest h kolo 75%
~ okoto 75%

Q=100 = s €/(69.1%,80.1%) wskaznik $?

Proces Bernoulliego — seria niezaleznych zdarzen
‘ losowych (klasyfikacja wektoréw danych), ktére mogg

zakonczyc¢ sie albo sukcesem (bardziej
prawdopodobne) albo stratg (mniej prawdopodobne).

*Wskaznik sukcesu = 1 — btad klasyfikacji

Eksploracja danych, Ocena kiasyfikacji

Politechnika todzka
Instytut Elektroniki 3
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Proces Bernoulliego a rozktad normalny

Srednia szansa na to, aby pojedyncza préba nalezaca do procesu
Bernoulliego zakonczyta sie sukcesem wynosi S.

0,12

Srednia liczba sukceséw dla
serii prob Bernoulliego wynosi 0,1

rowniez S. /
0,08 /_/_,
0,06

W przypadku duzej serii

zdarzen, proces Bernoulliego 0.04
zbliza sie do rozktadu Gaussa. \
0,02
0 T T T T T T T T T 1

Srednia poprawno$¢ klasyfikacji
[%] dla réznych serii zdarzen

‘ 68,0 69,3 70,6 71,9 73,2 745 758 77,1 78,4 79,7

—Rozktad normalny = ——Rozktad Bernoulliego

Eksploracja danych, Ocena kiasyfikacji

M0 Politechnika todzka

Instytut Elektroniki
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Obliczanie przedziatu ufnosci

Rozktad normalny N(0O,1) Granice przedziatow ufnosci
0,45
0.4 /\ Pr{x>z]
0,35 +— Srednia: 0 \ 0,1% 3,09

0,3 +— Wariancja: 1

/
0,25 I
0,2 I
/
/

0,5% 2,58
[ 1% 2,33 ]e
5% 1,65
10% 1,28

\
\
\\
ooo; / (_ZV) 20% 0,84

0,15

4 6 8 10 Wwynik klasyfikaciji

Prawdopodobienstwo tego,

72 fof2e 2 72 ze zmienna X przyjmie
S=|f+_—~xz2 | —+— 1+ warto$¢ oddalong o 2,33
2Q Q Q 4Q Q od sredniej (powyzej lub
7 tabeli ponizej) wynosi 2%.

Eksploracja danych, Ocena kiasyfikacji

M0 Politechnika todzka
AR Instytut Elektroniki 5
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Proba losowa wektorow danych

Przestrzen :
wektoréw danych Tylko, gdy Q jest
‘ dostatecznie duze

Q—ow Qe (O, M >

3-krotna walidacja

Zbiodr treningowy = Zbidr testowy < krzyzowa

|

Uczenie Testowanie

#1, #2 #3 > e,

Szacowanie btedu ‘ - e +e,+ e% #1, #3 #2 > e,
rzeczywist avg

eczywistego 3 #2, #3 #1> e,

Eksploracja danych, Ocena kiasyfikacji

M0 Politechnika todzka
Instytut Elektroniki 6
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Walidacja krzyzowa ze stratyfikacjq

Zbior treningowy Podziat losowy
® o o v
w
o © © o © © = o © ®_ o ° o
® e ...o .0 ® I . A Y.
.. - U .. P ® ® U
. PS w ®
w
! e % e 0o
® ! e o ®7 o ® o
W
0 | o W
® Tee | 0’ o
W ® o ® o : @ ® o ® o Podziat ze stratyfikacjg — zapewnia
@ o I o ® @ - rownomierny rozktad klas w
U U W ) .
W = @ : ® U U podzbiorach uczgcych i testowych.
I

Eksploracja danych, Ocena kiasyfikacji

™A Politechnika todzka
AR Instytut Elektroniki 7
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Szczegolny przypadek: Leave-one-out

Metoda leave-one-out: Q —krotna walidacja krzyzowa, gdzie

Q jest liczbg wszystkich wektoréw danych.

*( Zalety |

/) B Ny
» Najwieksza mozliwa czes¢ zbioru ( Wady |
danych jest dostepna w fazie L y
uczenia. * Duza ztozonos¢ obliczeniowa,
» Oszacowany bftad zawsze taki szczegolnie w przypadku
sam dla danego zbioru danych wiekszych zbioréw danych
(podziat zbioru treningowego jest i skomplikowanych algorytmow
deterministyczny). uczenia.
* Nierdbwnomierne roztozenie
klas w zbiorach testowych
| treningowych.

Eksploracja danych, Ocena kiasyfikacji

M0 Politechnika todzka
AR Instytut Elektroniki 8
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Metoda bootstrap 0.632

Losowanie Q wektorow ze zwracaniem

Prawdopodobienstwo
¢ ) WeEKIorow. Wektory wylosowania wektora

\/CI treningowe (moga w pojedynczej probie:
sie powtarzac)
1 B

Wektory testowe (niewylosowane) Prawdopodobienstwo niewylosowania
wektora w zadnej z Q proéb:

_ ‘ 4

Prawdopodobienstwo
niewylosowania wektora 1- }6
w pojedynczej probie:

Podstawa logarytmu naturalnego

Eksploracja danych, Ocena kiasyfikacji

M0 Politechnika todzka

Instytut Elektroniki 9
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Szacowanie btedu rzeczywistego w metodzie bootstrap

Dla dostatecznie duzego Q zbiér treningowy zawiera ok. 63,2% wektorow

z oryginalnego zbioru danych (przy 90% w przypadku zastosowania
10-krotnej walidacji krzyzowej).

Btad klasyfikacji popetniony Btad klasyfikacji popetniony
na zbiorze uczgcym: na zbiorze testowym:
€irain Cest
Oszacowanie zbyt Oszacowanie zbyt
optymistyczne pesymistyczne
€y = 0.632-€,, +0.368-€,,,

W przypadku nierbwnomiernego roztozenia klas w zbiorach testowym i treningowym

oszacowanie btedu rzeczywistego nadal moze byc zbyt pesymistyczne.

Eksploracja danych, Ocena kiasyfikacji

M0 Politechnika todzka

Instytut Elektroniki 10
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Krzywa uczenia

Przyktad

Btad klasyfikacji w zaleznosci od liczby wektoréw

20,0%

16,0% \

12,0%

8,0%

4,0% '

0,0%
5% 10% 25% A0% 50% 60% 70% 80% 90% 100%

Prawdopodobna — Zbiér danych:
wartosé btedu Plrocsnt caliI:ovyltej _ 3 Klasy
: iczby wektoréw
[ZEC2AISIE00 bioracych udziat w - 256 wektorow danych w klasie
uczeniu i testowaniu

Eksploracja danych, Ocena kiasyfikacji

Politechnika todzka

Instytut Elektroniki 11
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Wybor klasyfikatora

Zbiory obrazow tekstur

(24x24 piksele, 128 wektorow w klasie)

grass, weave, bark, brick, brick, sand,
plastic rafia clothe
Support vector machine
PROTE VEETO! TaeT 5,9% 2,4% 2,3%
(liniowa funkcja jgdra)
Regresja logistyczna 4,2% 1,6% 3,9%
Algorytm 1-R 21,6% 6,3% 18,0%

Eksploracia danych, Ocena kiasyfikacji

Politechnika todzka

Instytut Elektroniki 12
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Statystyka #Studenta

Hipoteza zerowa: roznica miedzy uzyskanymi wskaznikami poprawnosci klasyfikacji jest
przypadkowa; w rzeczywistosci wszystkie testowane algorytmy sg jednakowo dokfadne.

Zbiory danych (jednakowo liczne, z tej samej dziedziny)

| Rzeczywiste
Srednie bteddw
—> #1  #2 ... #k /
MetodaA: | 6% 5% .. 2% | ) €, Ly
MetodaB: | | 7% 8% .. 6% | == [, e
Wiliam Seally Gosset, /
ps. Student, 1876-1937 Probkowe wartosci
Btedy klasyfikacji srednie btedow

Eksploracja danych, Ocena kiasyfikacji

Politechnika todzka

Instytut Elektroniki 13
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Sparowany test Studenta

W przypadku gdy rozmiary probek sg duze, ich srednie majg rozktad normainy.

...ale rozmiary nie sg duze ® ‘ Srednie majg rozktad Studenta.

1. Jesli poszczegodlne wyniki dla metod A oraz B Standaryzacja zmiennej losowej
uzyskano dla tych samych zbiorow danych, to dla rozktadu Studenta
stosujemy sparowany test Studenta.

2. Analizujemy zmienna:

d=¢e, ¢,

3. Jezeli hipoteza zerowa jest stuszna, to:

- Ha = Hs ~ t = d

Eksploracja danych, Ocena kiasyfikacji

Politechnika todzka
Instytut Elektroniki 14
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Przedziaty ufnosci dla zmiennej £Studenta

Wartosci dla
przedziatéw
jednostronnych

Granice przedziatéw ufnosci

Rozktad Studenta Rozktad Guassa
Pr{X>7] Pr{X>7]

0,1% 4,30 0,1% 3,09

@ 3,25 0,5% 2,58

Tabela dla k=10
(9 stopni
swobody)

1% 2,82 1% 2,33
5% 1,83 5% 1,65
10% 1,38 10% 1,28
20% 0,88 0% 0,84

Decydujemy sie na jakis poziom ufnosci -/ 99%.

2. Obliczamy wartos¢ zmiennej t > t,.

3. Jezelit>7Zlubt<-zto odrzucamy hipoteze zerowa.

Politechnika todzka

Instytut Elektroniki

Eksploracja danych, Ocena kiasyfikacji
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Przebieg eksperymentu:

Utworzenie dziesieciu par
zbiorow treningowych oraz
testowych (Weka)

Uczenie i testowanie
klasyfikatora typu SVM (Weka)
—> zanotowanie wynikéw

(MS Excel)

Uczenie i testowanie
klasyfikatora regresyjno—
logistycznego (Weka) -
zanotowanie wynikow (MS Excel)

Porownanie efektywnosci
klasyfikatoréw przy uzyciu testu
Studenta (MS Excel)

P Politechnika todzka

Instytut Elektroniki

Eksploracja danych, Ocena kiasyfikacji
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KnowledgeFlow — przygotowanie eksperymentu

124 KnowledgeFlow

DataSources I DataSinks I Filters I Classifiers I Clusterers I Assodiations F“'ﬁhﬂﬁﬂﬁ’ '\u'isualizah'on|

-} ]
e Evaluation
— = = = = = = & m N
o » o » T o
(=50 b b 96 [ =5» ) (] : o
| ad, wd «d dals || ‘The = 3 == g -
Training Te=stdet Cro=ssValidation TrainTest Cla== Cla==aValue Clamsifier Incremsntal Cluste
SetMaker Maker FoldMaker SplitMaker Assigner Picker PerformanceEvaluator ClassifierEvaluator PerformanceBH

4 | [}

k

~Knowledge Flow Layout

ArffLoader

datalet

Ei BE_RA 0
12%_fisher

@g

Class=
As=ignar

Woczytanie zbioru danych

| »

StratifiedRemoveFolds

Stracified
FemoweFolds=

ArffSaver

m

datalet

afet

ﬂi%

Arfffaver

Zapis zbioru treningowego

Usuniecie zbioru testowego

4 | n

| 3

rStatus

Prablem filtering: see log for details.

Politechnika todzka

Instytut Elektroniki

Eksploracja danych, Ocena kiasyfikacji
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Wyniki doswiadczenia (obliczenia w MS Excel)

2,56%
0,00%
0,00%
2,56%
2,63%
2,63%
2,63%
0,00%
2,63%
5,26%

© 00 NOoO Ul W N P

=
o

5,13%
0,00%
0,00%
2,56%
0,00%
2,63%
5,26%
0,00%
0,00%
0,00%

Srednia
Wariancja

t

Rozktad.T

Test. T

UNIA EUROPEJSKA

FUNDUSZ SPOLECZNY

EUROPEJSKI

Prezentacja multimedialna wspoffinansowana przez Unie Europejska w ramach Europejskiego Funduszu Spotecznego

=:D12/PIERWIASTEK(D13/Allw
-2,56% 5 Z _ \
rednia
0,00% Liczba stopni swobody
0,00%
0,00% Wariancja :
Zmiennat
2,63%
0,00% \
-2,63%
0.00% =ROZKLAD.T(D14{A11}1)
2,63% i
5,26% Przedziat jednostronny
0,53%
0.06% Zakresy Test
: sparowany
78— \\
0,249978 «— /
0,250843+ =TEST.T(B2:B1L;£2:C11/1 1)

™A Politechnika todzka

Instytut Elektroniki

Eksploracja danych, Ocena kiasyfikacji
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Analiza wynikow doswiadczenia

Rozklad Studenta
PriX>7]

0,1% 4,30
0,5% 3,25

1% 2,82

5% 1,83 |

10% 1,38 | Istnieje 25% prawdopodobienstwo, ze

Przy poziomie ufnosci rwnym 99% (przedziat zmienna Studenta przyjmie wartosc

dwustronny), aby odrzuci¢ hipoteze o réwnej | rowng lub wigkszg od 0,7.
skutecznosci porownywanych klasyfikatoréw, 1
musiatby by¢ spetniony warunek, iz t > 3,25.

t 0,70
Whniosek: metoda SVM, jak i regresja Rozklad.T 0,249978
logistyczna sg jednakowo dobre do klasyfikaciji Focn T 0.250843

zbioru obrazow tekstur bark, brick, rafia.

Eksploracja danych, Ocena kiasyfikacji

Politechnika todzka

Instytut Elektroniki 19
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Szacowanie prawdopodobienstwa

NT wekiora KIaSYITKaloI PronaRIiISL/Czny: KIasyri]}g aio{
Ay SKIYMINAcyjny.

1 95% 5% A

2 92% 8% A

3 20% 80% B

45 51% 49% A

46 49% 51% B

7 1

Niepewnosc¢ wnioskowania o klasie ,
wektorow. Wektory 45 i 46 moga z niemal Jednoznaczne wskazanie na klase,
réwnym prawdopodobienstwem nalezeé do bez zadnej sugestii dotyczace;
A albo do B. potencjalnej pomyiki.

Eksploracja danych, Ocena kiasyfikacji

Politechnika todzka

Instytut Elektroniki 20
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Kwadratowa funkcja straty

W przypadku klasyfikatoréw ,nieostrych”, wyznaczajgcych prawdopodobienstwo

przynaleznosci wektorow do poszczegolnych klas, stosuje sie inne niz zerojedynkowe
funkcje straty.

Prawdziwa klasa wektora Wyznaczone prawdopodobienstwa
przynaleznosci do klasy
[al’aZ""’aK] [ ] K
P Pas-- -5 Py ij:]_
X, eC,—~>a =La, =0 j=1

Q Minimalizacja kwadratowej funkcji straty ma
1 ZZ (p B znaczenie gtéwnie w przypadku, gdy prawdziwa
i 9

klasa wektorow danych rowniez pochodzi z pewnego
rozktadu prawdopodobienstwa.

Eksploracja danych, Ocena kiasyfikacji

Politechnika todzka

Instytut Elektroniki 21
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Koszty bledow

Podczas uczenia klasyfikatorow najczesciej nie jest brana pod uwage

rozny rodzaj popetnianych btedow i zwigzany z nimi koszt.

Przyktad
system decyzyjny na podstawie informacji o pacjentach (dane metrykalne, wyniki

badan, objawy) klasyfikuje ich do jednej z dwu klas: chory / zdrowy.

Btad polegajacy na uznaniu chorego pacjenta za zdrowego moze byc¢
bardziej kosztowny niz decyzja, iz zdrowy pacjent jest chory.

Inne przyktady:

- decyzja o przyznaniu pozyczKi,

- wykrywanie uszkodzen,

- identyfikacja samolotéw nieprzyjaciela.

Eksploracja danych, Ocena kiasyfikacji

M0 Politechnika todzka

Instytut Elektroniki 22
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Mozliwe wyniki predykcji klasy

Oznaczenie danej klasy wektorow etykietg

Przypadek 2 klas Wynik klasyfikacji TAK lub NIE zalezy od kontekstu.

Tak (1) || Nie (0) .

@ Wielko$é btedu klasyfikacii
= | Tak (1) TP FN

& . TP+TN

3 TP+TN + FP + FN
§ Nie (0) FP TN

x

lloraz TP lloraz FP

| TP'—true positive @ FP'— false positive™ TP FP
N s e TP+ FN FP+TN
e negative \ e negative

Eksploracja danych, Ocena kiasyfikacji

Politechnika todzka

Instytut Elektroniki
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Macierz pomytek

Wynik klasyfikacii Klasyfikator 1-R
ERNENENEEY /
113 0 15 128

3 125 0 128 ]

o
L
2
N
o
N
g

6 0 122 128

2 ows o | e

- ezl el e == Wyniki uzyskane dla zbioru obrazéw
=== Summary === tekstur (bark, brick, rafia)
Correctly Classified Instances 360 93.75 %
| Incorrectly Classified Instances 24\ S Na ile tak naprawde klasyfikator
ci Kappa statistic w jest skuteczny?
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Statystyka Kappa

Klasyfikator losowy Wynik klasyfikacji

\

Rzeczywista

36 37 55 128

Lo 67 15 46 128
ICZDa

pOprzleyc_:h 148 110 126 384
preaykcji

klasyfikatora 1-R _ .
Liczba poprawnych wskazan

/ klasyfikatora losowego

\ |_1 —L /
Licznosé zbioru | & = ————1%0W L o =360 Ly =128
danych I Q — I—Iosowy Q =384 = 0,9063
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Ocena wyniku uwzgledniajgca koszt

Macierze kosztu

Domy - SZCzZegolina
Wynik klasyfikacji Wynik klasyfikacji
Rzeczywista _ Rzeczywista _
klasa Tak (1) Nie (0) klasa Tak (1) Nie (0)
Tak (1) 0 1 Tak (1) 0 4
Nie (0) 1 0 Nie (0) 1 0

* Przy ocenie klasyfikatora brany pod uwage jest koszt btedéw, nie zas sam wskaznik sukcesu.
* Model kosztu moze uwzgledniac takze koszt uzycia systemu uczgcego sie, czy tez pozyskania danych.

* W przypadku klasyfikatorow probabilistycznych, wektory testowe przypisuje sie do najbardziej
prawdopodobnej klasy przy jednoczesnym zapewnieniu minimum kosztu decyziji klasyfikujgce;j.
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Uczenie uwzgledniajgce koszt

syt i
klasyfikatora ‘ Testowanie ‘ Ocena klasyfikaciji

Ocena
uwzgledniajgca koszt

Zbior
treningowy
Zwiekszenie proporcji Poprawa zdolnosci klasyfikatora do predykciji tej klasy
wektorow jednej (w przypadku wyboru klasy oznaczonej etykietg TAK
wybranej klasy — zmniejszenie liczby bteddw typu FP).
Uczenie uwzgledniajgce koszt
l Eksploracja danych, Ocena kiasyfikacji
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Zwiekszanie ilorazu TP

Przestrzen cech

Pomiar doktadny (duzy koszt) | Pomiar zgrubny (maty koszt)

(1 .2 3 N—2 N-1 N |
X0 X1 X7 .l

Zadaniem klasyfikatora jest wyznaczenie
podzbioru wektoréw danych, w ktorym

Klasa A (TAK) — 1000 wektoréw danych iloraz TP bedzie wigkszy.

Klasa B (NIE) — 999000 wektorow danych t Wydobywanie informagii

(ang. information retrieval, IR)

Eksploracja danych, Ocena kiasyfikacji
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Wykres wzrostu
Naiwny klasyfikator Bayesa S| 100%
X /
. . . < 80% /
Pozycjaw | Wynik Rzeczywista = X
rankingu klasyfikacji | klasa E / 7
©
1 0,99 TAK < | 0% / /
N /
2 0,98 TAK % pr
3 0,97 TAK o / /
< /
4 0,95 NIE a;.) 20%
5 0,94 TAK © / /
S 0%
5’ 0% 20% / 40fy/ 60% 80% 100%

Liczba wszystkich wektorow danych

Wystarczy 40% catego zbioru danych, aby znalazto sie w nim
80% wszystkich wektorow z klasy ,pozytywnej”.

przynaleznosci do klasy
oznaczonej etykietg TAK

Im wieksza powierzchnia pod wykresem, tym lepszy klasyfikator.

Eksploracja danych, Ocena kiasyfikacji
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Krzywa ROC
100% () . . .
T Znalezienie wszystkich
= - | wynikéw typu TP odbywa sie
S | kosztem popetnienia ok.
§ 60% - 55% btedéw typu FP.
o
a 40% ON
= Podobnie jak w przypadku
20% JF analizy wykresow wzrostu,
™~ powierzchnia pod krzywa
0%
0% 20% 40% 60% 80% 100% ROC dla SkUt.eczneg(? .
klasyfikatora powinna by¢ jak

najwieksza.

False positive

ROC (ang. receiver operating characteristic) — wielko$¢ uzywana przy detekc;ji

sygnatow transmitowanych przez zaszumiony kanat ; pozwala okresli¢ kompromis
pomiedzy liczbg wtasciwych trafien oraz fatszywych alarmow.

Eksploracja danych, Ocena kiasyfikacji
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£ KnowledgeFlow

DataSources I DataSinks I Filters I Classifiers I Clusterers | Associations F“'EﬂUﬂﬁDl‘l‘ \u'isualizaﬁon|

= [E) [

*]

B
e Evvaluation
= =t £ £ -+ =t 2 | 3 e sl =
X K K » E K . :
(5h 5 5h 45 7k (=h Pl (e ‘ o
=] ey ooy (e ‘Gady = =T o8] 7] 4 B
Training TestIet CrossValidation TrainTest Class Cla=ssValue Classifier Incremental Cluste
SetMaker rformanceEvaluator ClassifierEvaluator PerformanceR

4|

Podziat wektoréw na zbior

»

Knowledge Flow Layout

ArffLoader

uczacy i testowy

Ocena klasyfikacji

ArffLoadsc

atchllassifier

Clas=sifalue
Ficker

i

Wskazanie klasy positive <

Naiwny klasyfikator
Bayesa

4 | 1

rStatus

a -
i3 . g
: s‘h‘*
acaletq . + L m‘
dataJet Tain s - 10%
Bplisl
trainingSet
LY = Cla=s=zifiarx
=S Fesuies PerformanceEvaluator

1

thresholdData

Model

PerformanceChart

m

ModelPerfo

rmanceChart

=

»

Welcome to the Weka Knowledge Flow

|
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Ocena wynikow wydobywania informacji

Dokumenty zgodne z kryterium wyszukiwania

(ang. relevant documents) to wektory danych

nalezgce do klasy ,pozytywnej” (oznaczonej
etykietg TAK).

W przypadku wydobywania informacji mowi sie
o dokumentach, a nie o wektorach danych.

/

_ liczba wydobyty b dokumentow|zgodny ch z Kryterium

call
liczba wszystkid dokumentéw zgodnych z kryterium
oresision = liczba wydobyty b dokumentéw zgodnych z kryterium
liczba wszystkid wydobytyh dokumentéw
2-recall - precision 2-TP
F-measure = =

recall + precision  2-TP+FP +FN

Eksploracja danych, Ocena kiasyfikacji
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