

Instrukcja współfinansowana przez Unię Europejską
w ramach Europejskiego Funduszu Społecznego

w projekcie

„Innowacyjna dydaktyka bez ograniczeń
– zintegrowany rozwój Politechniki Łódzkiej – zarządzanie Uczelnią,

 nowoczesna oferta edukacyjna i wzmacniania zdolności
do zatrudniania osób niepełnosprawnych”

Instrukcja jest dystrybuowana bezpłatnie.

90-924 Łódź, ul. Żeromskiego 116,
tel. 042 631 28 83
www.kapitalludzki.p.lodz.pl

Instrukcja do laboratorium

Hubert Nowak

Programy komputerowe do
przetwarzania i analizy obrazów oraz
wideo I

Zadanie nr 13 – Studia podyplomowe „Przetwarzanie i analiza obrazów biomedycznych”

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. Żeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
2/2

 Spis treści
Spis treści... 2
Wprowadzenie .. 2
Instalacja i konfiguracja środowiska .. 3

Przygotowanie projektu aplikacji dla VC++ ... 3
Uwagi do konfiguracji Visual Studio Express Edition ... 5
Konfiguracja środowiska BC++ i przygotowanie bibliotek (*.lib).. 6
Projekt aplikacji dla BC++ ...6

Podstawowe funkcje przetwarzania obrazu. ... 8
Zawartość skrypty do ćwiczeń. ... 8
Wczytywanie i wyświetlanie obrazu .. 9
Kopiowanie obrazu (i odbicie obrazu) ... 10
Tworzenie nowej zmiennej dla obrazu i skalowanie obrazu ... 11
Korekcja jasności .. 12
Korekcja jasności obrazów barwnych .. 13
Manipulacja przestrzeniami barw.. 14
Filtracja ... 16
Segmentacja obrazu - Progowanie ... 19

Interakcja z użytkownikiem .. 19
Użycie suwaków (Trackbar) do zmiany parametrów przetwarzania .. 20

Przetwarzanie sekwencji wideo... 21
Odczyt i przetwarzanie obrazów z sekwencji wideo. ... 21

 Wprowadzenie
Biblioteka Intel OpenCV została stworzona jako narzędzie do tworzenia aplikacji z dziedziny
Computer Vision działających w czasie rzeczywistym. Jednym z głównych elementów jest
zbiór zmiennych i funkcji do przetwarzania obrazów. Biblioteka jest bezpłatna i można ją
pobrać pod ze strony internetowej:
http://sourceforge.net/projects/opencvlibrary/
Najnowsza dostępna wersja to 1.0. W przypadku programowania w środowisku Borland C++
Builder lepiej jest wykorzystywać wersję Beta 5, ponieważ w innych wersjach (w tym
finalnych jak wersja 1.0) obsługa tego środowiska nie jest pełna. Środowisko Visual C++ jest
w pełni kompatybilne ze wszystkimi wersjami. Po zainstalowaniu OpenCV dostępne są
szablony projektów dla Visual Studio wykorzystujących OpenCV. Szczegóły, pomoc oraz
instrukcje używania biblioteki w różnych środowiskach programistycznych można znaleźć
na stronie internetowej:
http://opencvlibrary.sourceforge.net

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. Żeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
3/3

 Instalacja i konfiguracja środowiska
Bibliotekę można pobrać z Internetu w postaci spakowanego archiwum, kodów źródłowych
lub najprościej w postaci pliku instalatora dla systemu Windows. Dla aktualnej wersji 1.0 plik
instalatora to OpenCV_1.0.exe i tej właśnie wersji dotyczyć będą zawarte tu instrukcje (dla
środowiska Borland C++ Builder zalecane jest stosowanie wersji beta5 - plik instalatora to
OpenCV_b5a.exe). Domyślnie biblioteka instalowana jest w folderze "C:\Program
Files\OpenCV" w którym tworzona jest odpowiednia struktura katalogów z których
najistotniejsze to:

C:\Program Files\OpenCV\bin - biblioteki dynamiczne (*.dll)
 ...\cxcore - kody źródłowe dla modułu cxcore, podstawowe typy danych i funkcje.
 ...\cv - j.w. dla cv, funkcje przetwarzania obrazu
 ...\cvaux - j.w. dla cvaux, funkcje zaawansowane i eksperymentalne (3D, PCA,
HMM)
...\otherlibs_graphics - funkcje obsługi różnych formatów plików graficznych
 ...\cvcam - kody źródłowe dla modułu cvcam do obsługi video i kamer
 ...\highgui - kody źródłowe dla modułu highgui czyli graficznego interfejsu użytkownika
 ...\lib - biblioteki importu (*.lib)
 ...\docs - dokumentacja biblioteki OpenCV
Przydatna może okazać się także zawartość folderów:

 ..._make - szablony projektu dla VC++ i konfiguracja innych kompilatorów.
 ...\sample - przykładowe aplikacje, wraz z kodami źródłowymi
Biblioteki importu i biblioteki dynamiczne zostały wygenerowane w środowisku Visual C++.
W tym właśnie środowisku, po instalacji, biblioteka może być od razu wykorzystywana
(dostarczony jest nawet szablon projektu dla VC++ w wersji 6). Ponieważ biblioteki importu
dla VC++ (Visual Studio C++) i BC++ (Borland C++) mają inny format to należy w
pierwszej kolejności wygenerować odpowiednie dla BC++ biblioteki.

Przygotowanie projektu aplikacji dla VC++
Po zainstalowaniu OpenCV dostępne są szablony projektów aplikacji w Visual C++ .NET
2003. W tym właśnie środowisku zostały skompilowane biblioteki importu oraz dołączane
dynamicznie biblioteki (*.dll). Uruchomienie projektu w tym środowisku nie nastręcza więc
kłopotów - wystarczy użyć gotowego projektu. W przypadku innych wersji konieczne jest
ręczne wygenerowanie i skonfigurowanie projektu oraz samego środowiska. Poniższy opis
dotyczy wersji Visual C++ 2005 i może być także wykorzystany do konfiguracji innych
wersji środowiska VC++. W nowszych wersjach konfiguracja i tworzenie projektu przebiega
analogicznie.
Opis przygotowania projektu aplikacji w Visual Studio 6.0 znajduje się także pod tym
adresem:
http://opencvlibrary.sourceforge.net/VisualC%2B%2B

Konfiguracja środowiska:
1. Po uruchomieniu Visual C++ należy z menu głównego wybrać Tools > Options
2. Z listy po lewej stronie wybrać Projects > VC++ Directories.
3. W polu oznaczonym Show Directories for zaznaczyć Library files.
4. kliknąć ikonę New Line, po czym w nowej linii podać ścieżkę do katalogu bibliotek
OpenCV w tym przypadku "C:\Program Files\OpenCV\lib"

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. Żeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
4/4

5. Zmienić zaznaczenie w polu Show Directories for na Include files i tak samo jak w punkcie
4 dodać ścieżki do katalogów z plikami nagłówkowymi:
 "C:\Program Files\OpenCV\cv\include"
 "C:\Program Files\OpenCV\cxcore\include"
 "C:\Program Files\OpenCV\otherlibs\highgui"
 "C:\Program Files\OpenCV\cvaux\include"
 "C:\Program Files\OpenCV\otherlibs\cvcam\include"
6. Zmienić zaznaczenie w polu Show Directories for na Source files i tak samo jak w punkcie
4 dodać ścieżki do katalogów z plikami wykonywalnymi:
 "C:\Program Files\OpenCV\cv\src"
 "C:\Program Files\OpenCV\cxcore\src"
 "C:\Program Files\OpenCV\cvaux\src"
 "C:\Program Files\OpenCV\otherlibs\highgui"
 "C:\Program Files\OpenCV\otherlibs\cvcam\src\windows"
W tym momencie kończy się konfiguracja środowiska Visual Studio do korzystania z
bibliotek OpenCV. Dalsze punkty dotyczą już projektu programu.
7. Można teraz stworzyć projekt aplikacji wybierając z menu głównego kolejno File > New >
Project.
8. W otwartym oknie należy wybrać typ aplikacji, np. Win32 Console Application i w polu
Name podać nazwę projektu oraz zaznaczyć opcję: Create directory for solution.
9. W kolejnym oknie należy przejść do zakładki Application Setings i sprawdzić czy
zaznaczona jest opcja Console Application i ewentualnie Precompiled header (nie jest
konieczna ale jej zaznaczenie skraca nieco czas kolejnych kompilacji programu), po czy
wcisnąć OK.
Automatycznie wygenerowany zostanie projekt programu. Struktura projektu ze wszystkimi
automatycznie wygenerowanymi plikami jest wyświetlona w oknie z lewej strony ekranu
(Solution Explorer). W polu edycji otwarty zostanie plik z główną funkcją programu
_tmain(...):

#include "stdafx.h"
int _tmain(int argc, _TCHAR* argv[])
{
 return 0;
}

10. Wygenerowany kod aplikacji można teraz skompilować wybierając z menu głównego
kolejno
Build > Build Solution.
11. Aby korzystać z biblioteki OpenCV należy do aplikacji dołączyć pliki nagłówkowe.
Najwygodniej jest dołączyć je w pliku stdafx.h (w przeciwnym wypadku mogą się pojawić
błędy kompilacji) wpisując następujący fragment kodu:

#include <cv.h>
#include <cxcore.h>
#include <highgui.h>
#include <cvaux.h>
#include <cvcam.h>

12. Aby uniknąć możliwych błędów linkera należy wybrać z menu kolejno Project >
Properties, następnie wybrać z listy pole Linker > Input, gdzie w polu Additional
Dependencies wpisać nazwy plików: cxcore.lib cv.lib highgui.lib cvaux.lib cvcam.lib.

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. Żeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
5/5

Zamiast tego można w miejscu dopisania plików nagłówkowych (pkt. 11) dodać następujący
kod:

#pragma comment (lib, "cv.lib")
#pragma comment (lib, "cxcore.lib")
#pragma comment (lib, "cvaux.lib")
#pragma comment (lib, "cvcam.lib")
#pragma comment (lib, "highgui.lib").

Można teraz wewnątrz funkcji _tmain(...) wpisać kod wykorzystujący OpenCV a następnie
skompilować program.
Kolejny projekt nie wymaga już konfiguracji a jedynie dołączenia plików nagłówkowych do
kodu i powinien kompilować się bez błędów.
W przypadku Visual C++ 6, lub Visual C++ .Net aplikacja powinna się kompilować i
uruchamiać bez problemów.
Przykładowy program wykorzystujący bibliotekę OpenCV do wyświetlenia obrazu z pliku (tu
pliki nagłówkowe dodano bezpośrednio w głównym pliku z kodem programu):
#include "stdafx.h"
#include <cv.h>
#include <cxcore.h>
#include <highgui.h>
#include <cvaux.h>
#include <cvcam.h>

int _tmain(int argc, _TCHAR* argv[])
{
 IplImage *img= cvLoadImage("E:\\lena.bmp",0);
 cvNamedWindow("Image", 1);
 cvShowImage("Image",img);
 cvWaitKey(0);
 cvReleaseImage(&img);
 return 0;
}
Podany tu przykład programu, przy prawidłowo skonfigurowanym środowisku i projekcie
powinien się kompilować i uruchamiać bez problemu.

Uwagi do konfiguracji Visual Studio Express Edition
W wersji Express Edition (np. Visual C++ 2005 Express Edition) dostępnych bezpłatnie także
do zastosowań komercyjnych, konieczne jest zainstalowanie Microsoft Windows platform
SDK, który można zainstalować z Internetu bądź pobrać obraz ISO płyty DVD. Adres skąd
można pobrać SDK:
http://www.microsoft.com/downloads/details.aspx?FamilyId=0BAF2B35-C656-4969-ACE8-
E4C0C0716ADB&displaylang=en
Podczas instalacji wystarczy wybrać komponenty dla C++. Po zainstalowaniu SDK konieczne
jest jeszcze skonfigurowanie środowiska Visual C++. W tym celu należy:
1. Wybrać z menu głównego Tools > Options.
2. Z listy po lewej stronie okna dialogowego wybrać Project and Solutions > VC++
Directories.
3. W polu Show Directory for: zaznaczyć Include files a w polu poniżej dodać wiersz ze
ścieżką do folderu z plikami nagłówkowymi: C:\Program Files\Microsoft

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. Żeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
6/6

SDKs\Windows\v6.1\Include (przy założeniu że biblioteka zainstalowana jest w domyślnej
lokalizacji).
4. W polu Show Directory for: zaznaczyć Library files a w polu poniżej dodać wiersz ze
ścieżką do folderu z bibliotekami importu: C:\Program Files\Microsoft
SDKs\Windows\v6.1\Lib.
Po skonfigurowaniu IDE, można skompilować projekt (Build > Build Solution F7) i
uruchomić go (Debug > Start Without Debugging Ctrl+F5).

Konfiguracja środowiska BC++ i przygotowanie bibliotek (*.lib)
Aby korzystać z biblioteki konieczne jest wygenerowanie bibliotek importu (*.lib). Można to
zrobić poprzez kompilacje całej biblioteki z kodów źródłowych (metoda może być użyta
także dla innych kompilatorów), konwersję z bibliotek dynamicznych (za pomocą programu
implib.exe, dostarczanego razem ze środowiskiem BC++) lub poprzez konwersję bibliotek dla
VC++ (za pomocą programu coff2omf.exe, będącego częścią środowiska BC++).
Biblioteki importu znajdują się w katalogu "..\OpenCV\lib". Konwersję wygodnie jest
wykonać za pomocą pliku wsadowego umieszczonego w katalogu w którym znajdują się
biblioteki, którego zawartość pokazano poniżej.
md bcblib
coff2omf -v cv.lib bcblib\cv097.lib
coff2omf -v cvaux.lib bcblib\cvaux097.lib
coff2omf -v cvcam.lib bcblib\cvcam097.lib
coff2omf -v cxcore.lib bcblib\cxcore097.lib
coff2omf -v highgui.lib bcblib\highgui097.lib
coff2omf -v trs.lib bcblib\trs.lib
coff2omf -v cxt.lib bcblib\cxts001.lib
Nowe biblioteki zostaną zapisane do nowo utworzonego katalogu "..\OpenCV\lib\bcblib",
który po wygenerowaniu bibliotek wygodnie jest przenieść bezpośrednio do katalogu
"..\OpenCV". Można także wykonać odpowiednią sekwencję operacji wpisując komendy w
wierszu poleceń (należy wtedy najpierw przejść do odpowiedniego katalogu – w tym
przypadku "..\OpenCV\lib\").

Projekt aplikacji dla BC++
Ponieważ OpenCV zawiera funkcje do obsługi interfejsu użytkownika nie ma konieczności
korzystania z komponentów oferowanych przez Buildera dzięki wystarczające jest
wygenerowanie aplikacji konsolowej. Aby wygenerować projekt takiej aplikacji należy po
uruchomieniu środowiska Borland C++ Builder wykonać następujące kroki:
1. Z menu głównego wybrać kolejno File>New>Other...
2. W wyświetlonym oknie wybrać Console Wizard a w kolejnym oknie wystarczy jeśli będzie

zaznaczona opcja C++ oraz Console Application.
3. Po wciśnięciu OK, wyświetli się okno dialogowe zapisu plików z kodem (domyślnie

Unit1.cpp) oraz projektu (domyślnie Project1.bpr), które najlepiej zapisać w osobnym
katalogu utworzonym specjalnie dla projektowanej aplikacji.

4. We właściwościach projektu Project > Options w zakładce Directories/Conditionals
należy dodać ścieżki do katalogów z plikami nagłówkowymi do katalogu z bibliotekami
dla BC++.

a. W polu Include Path dodać wpisy:
 C:\Program Files\OpenCV\cv\include
 C:\Program Files\OpenCV\cvaux\include

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. Żeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
7/7

 C:\Program Files\OpenCV\cxcore\include
 C:\Program Files\OpenCV\otherlibs\highgui
 C:\Program Files\OpenCV\otherlibs\cvcam\include
b. W polu Library Path należy dodać:
 C:\Program Files\OpenCV\bcblib
5. Do głównego pliku programu należy dodać potrzebne pliki nagłówkowe:
 #include <highgui.h>
 #include <cxcore.h>
 #include <cv.h>
 ...
6. Następnie należy wskazać lokalizację bibliotek. W tym celu należy z menu głównego

wybrać: Project > Add to Project.
7. W oknie wyboru plików zmienić filtr rozszerzeń na *.lib i przejść do katalogu gdzie

znajdują się wygenerowane wcześniej biblioteki "..\OpenCV\bcblib" i zaznaczyć
odpowiednie biblioteki (odpowiadające dołączonym plikom nagłówkowym czyli w tym
przypadku highgui.lib, cv.lib i cxcore.lib).

8. Ze względu na możliwą nie pełną kompatybilność z kompilatorem firmy Borland należy w
we właściwościach Projektu, Project > Options, w zakładce Advanced Compiler
zaznaczyć w polu Source opcję MFC Compatibility.

9. Tak skonfigurowany projekt należy zapisać (może się on przydać jako szablon projektu
wykorzystującego OpenCV).

10. W pliku głównym programu można teraz zacząć pisać właściwy kod programu (np. taki
jak w przykładzie poniżej).

Jeśli aplikacja ma wykorzystywać systemowe komponenty graficznego interfejsu
użytkownika bądź komponenty środowiska BC++ Builder to do projektu aplikacji
generowanego przez IDE (środowisko programistyczne) trzeba dodać odpowiednie elementy
wykonując kroki od 4 do 10.
Przykład kodu wyświetlającego obraz wczytany z pliku. Tekst jaśniejszy został
wygenerowany automatycznie, ciemniejszy należy wpisać samodzielnie.
//--
#pragma hdrstop
#include <highgui.h>
#include <cxcore.h>
#include <cv.h>
//--
#pragma argsused
int main(int argc, char* argv[])
{
 IplImage *img= cvLoadImage("E:\\lena.bmp",0);
 cvNamedWindow("Image", 1);
 cvShowImage("Image",img);
 cvWaitKey(0);
 cvReleaseImage(&img);
 return 0;
}
//--
--
Uwaga: Alternatywny szablon aplikacji w BCB wykorzystującego OpenCV dostępny jest na stronie:
http://opencvlibrary.sourceforge.net/C%2B%2BBuilder

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. Żeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
8/8

 Podstawowe funkcje przetwarzania obrazu.
OpenCV jest biblioteką funkcji w języku C++. Dlatego podstawy programowania są
przydatne w tworzeniu programów z wykorzystaniem biblioteki. Nie jest jednak konieczna
zaawansowana wiedza na temat tego języka. OpenCV posiada własny zestaw funkcji do
budowy prostego GUI i komunikacji z użytkownikiem oraz operacji na plikach.
W zakresie przetwarzania obrazów najistotniejszym typem danych jest IplImage, który służy
do przechowywania informacji o obrazie oraz pozwala wykonywać wszelkie operacje na nim.
IplImage pochodzi z biblioteki Intel Image Processing Library (obecnie Intel Performance
Primitives) gdzie zdefiniowany jest jako struktura:
typedef struct _IplImage
 {
 int nSize; /* sizeof(IplImage) */
 int nChannels; /* kanały barw, większość funkcji OpenCV obsługuje 1,2,3 lub 4
 kanały */
 int depth; /* liczba bitów na piksel: IPL_DEPTH_8U, IPL_DEPTH_8S,
 IPL_DEPTH_16U,
 IPL_DEPTH_16S, IPL_DEPTH_32S, IPL_DEPTH_32F and
 IPL_DEPTH_64F */
 int dataOrder; /* 0 – przeplot kanałów barwnych, 1 – osobne kanały barw.
 cvCreateImage tworzy tylko kanały z przeplotem */
 int origin; /* 0 – początek układu współrzędnych w lewym górnym rogu,
 1 – w prawym dolnym rogu */
 int width; /* szerokość obrazu w pikselach */
 int height; /* wysokość obrazu w pikselach */
 struct _IplROI *roi;/* fragment obrazu do przetwarzania */
 struct _IplImage *maskROI; /* musi być równe NULL w OpenCV */
 int imageSize; /* rozmiar obrazu w bajtach (=image->height*image->widthStep)*/
 char *imageData; /* wskaźnik do danych obrazowych */
 int widthStep; /* Rozmiar wiersza obrazu w bajtach */
 ...
 }
 IplImage;

Zawartość skrypty do ćwiczeń.
Pokazano tu jedynie fragment struktury ponieważ OpenCV nie wykorzystuje wszystkich jej
elementów.
Pokazywane w dalszej części skryptu programy są w większości przypadków kompletnym
kodem wykonującym opisywane zadanie. Pominięto jedynie dołączane pliki nagłówkowe
które omówiono w rozdziale o konfiguracji środowiska i tworzeniu projektu programu. W
przykładowych programach elementy biblioteki OpenCV które pojawiają się w skrypcie po
raz pierwszy są napisane wytłuszczoną czcionką. W dalszych częściach skryptu kod aplikacji
jest ograniczony jedynie do istotnych dla jego działania elementów i może nie zawierać
fragmentów powtarzających się we wcześniejszych ćwiczeniach, np. wczytywania pliku lub
tworzenia i wyświetlania okna z obrazem. Za każdym razem jest to zaznaczone w opisie
ćwiczenia lub komentarzach w kodzie programu. Dłuższy kod programu może być także
dzielony na fragmenty, co także zaznaczono w opisie.

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. Żeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
9/9

Pełny kod każdego z opisywanych tu ćwiczeń jest dostępny w wersji elektronicznej w formie
projektu dla VC++ . Nazwa projektu dla każdego z przykładów jest podana na końcu każdego
z ćwiczeń. Na końcu każdego z ćwiczeń zamieszczono także polecenia do samodzielnego
wykonania. Wykonanie zadanych ćwiczeń w większości przypadków polega na
zmodyfikowaniu kodu programu z danego ćwiczenia przy użyciu informacji z opisu do
zrealizowanych wcześniej przykładów.

Wczytywanie i wyświetlanie obrazu
Podstawowe operacje to oczywiście wczytywanie i wyświetlanie obrazu:
int _tmain(int argc, _TCHAR* argv[])
{
 IplImage *img= cvLoadImage("E:\\lena.bmp",0);
 cvNamedWindow("Image", 1);
 cvShowImage("Image",img);
 cvWaitKey(0);
 cvReleaseImage(&img);
 return 0;
}

Program którego kod pokazano wyżej jest aplikacją konsolową. Jego uruchomienie spowoduje
wyświetlenie konsoli systemowej. Funkcje interfejsu, tworzenie i obsługa okien jest realizowana przez
funkcje OpenCV (oczywiście można też inaczej).
IplImage *img= cvLoadImage("lena.bmp",0);
Ciąg instrukcji który tworzy odpowiednią zmienną typu IplImage (dokładniej wskaźnik do
niej) i wczytuje obraz z pliku. Funkcja cvLoadImage jako pierwszy argument pobiera łańcuch
znaków z nazwą pliku (lub pełną ścieżką i nazwą jeśli plik nie jest tam gdzie program), drugi
argument wymusza wczytanie obrazu jako monochromatyczny: 0, lub wczytuje jako obraz
barwny: 1, albo też w oryginalnym formacie: -1.
cvNamedWindow("Image", 1);
Funkcja zdefiniowana w pliku highgui.h zawierającym m.in. funkcje do obsługi interfejsu
graficznego. Pierwszy argument to łańcuch znaków reprezentujący nazwę okna (to co podano
jako argument dla funkcji cvNamedWindow). Drugi argument decyduje czy okno ma być
dopasowane do rozmiaru obrazu – 1, czy obraz dopasowany do domyślnego rozmiaru okna –
0;
cvShowImage("Image",img);
Wyświetla obraz we wskazanym oknie. Pierwszy argument to łańcuch znaków z nazwą okna,
natomiast drugi to nazwa zmiennej z obrazem.
cvWaitKey(0);
Zatrzymuje wykonywanie programu i czeka na wciśnięcie klawisza. Jeśli argument jest
równy 0 to czeka w nieskończoność. Jeśli większy od zera to oznacza on liczbę milisekund
oczekiwania na klawisz.
Jak można się domyślić wszystkie funkcje z biblioteki mają przedrostek cv, natomiast
wszystkie typy zmiennych mają przedrostek Cv (tu jeszcze się nie pojawiły), zdefiniowane
stałe zaczynają się od CV_.
Szczegóły działania tych funkcji jak i pozostałych funkcji z biblioteki highgui.h znajdują się
na stronie:
http://opencvlibrary.sourceforge.net/HighGui

Kod programu zawiera projekt opcv_1

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. Żeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
10/10

Do zrobienia:
- Wczytać obraz kolorowy z różnymi argumentami decydującymi o trybie wczytywania

i wyświetlić go także modyfikując parametry okna.

Kopiowanie obrazu (i odbicie obrazu)
Klonowanie jest czasem przydatną operacja gdy potrzebne są kopie zmiennych
przetwarzanych, lub gdy potrzebujemy zmienną o odpowiednich parametrach (liczba
kanałów, rozmiar, głębia kolorów,...), np. po to aby podać ją jako argument dla funkcji.
...
int _tmain(int argc, _TCHAR* argv[])
{
 IplImage *img= cvLoadImage("E:\\lena.bmp",0);
 cvNamedWindow("Image", 1);
 cvShowImage("Image",img);

IplImage *img2 = cvCloneImage(img); // tworzy nową zmienną i
wpisuje do // niej kopię
img

 cvFlip(img,img2,1); // odbicie w poziomie

 cvNamedWindow("Fliped Image",1); // tworzę okno
 cvShowImage("Fliped Image", img2); // wyswietlam obraz w oknie
 cvWaitKey(0);
 cvReleaseImage(&img);
 cvReleaseImage(&img2);
 return 0;
}
Nowymi funkcjami są tu polecenia cvCloneImage i cvFlip.
IplImage *img2 = cvCloneImage(img);
Tworzy kopię img2 zmiennej img.
cvFlip(img,img2,1);
Odbija obraz określony pierwszym argumentem (tu img) i zapisuje go do zmiennej określonej
drugim argumentem (tu img2). Ponieważ funkcja cvFlip wymaga podania jako argumentów
zmiennej źródłowej i docelowej oraz parametry tych zmiennych muszą się zgadzać to użycie
funkcji cvClone upraszcza całe zadanie. Operacje można wykonać także na tej samej
zmiennej wtedy podstawiamy tą samą zmienną jako źródło i wynik lub jako drugi argument
podajemy NULL.
cvFlip(img,img,1);

lub
cvFlip(img,NULL,1);
Ostatnim argumentem jest kierunek odbicia gdzie 0 oznacza odbicie w pionie, 1 – w
poziomie.
Funkcja cvFlip jak i pozostałe funkcje przetwarzania obrazu zdefiniowano w cv.h a
szczegółowy ich opis znajduje się na stronie:
http://opencvlibrary.sourceforge.net/CvReference
W tym przykładzie nie ma to wielkiego znaczenia ponieważ zakończenie programu usunie z
pamięci wszystkie zmienne. W większych programach konieczne jest kontrolowanie istnienia
w pamięci zmiennych i usuwanie ich gdy nie są już potrzebne. Służy do tego funkcja void

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. Żeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
11/11

cvReleaseImage (IplImage** image). Której argumentem jest wskaźnik do zmiennej
przechowującej obraz np.:
cvReleaseImage(&img2);
spowoduje wyczyszczenie zawartości zmiennej o nazwie img2.

Kod programu zawiera projekt opcv_2
Do zrobienia:

− Odbicie w pionie.

Tworzenie nowej zmiennej dla obrazu i skalowanie obrazu
W przypadku gdy w wyniku przetwarzania otrzymujemy obraz o innych atrybutach, np.
podczas skalowania gdy obraz wynikowy ma inne rozmiary nie można wykorzystać
kopiowania zmiennej aby uzyskać zmienną dla obrazu wynikowego. W takim przypadku
należy stworzyć nową zmienną typu IplImage.
Odpowiedni przykład tworzenia zmiennej i wykorzystania jej do skalowania pokazano w
przykładowym kodzie.
int _tmain(int argc, _TCHAR* argv[])
{
 IplImage *img= cvLoadImage("E:\\lena.bmp",0);
 cvNamedWindow("Image", 1);
 cvShowImage("Image",img);
 // tworzy pusty obraz
 IplImage *bigimg =
cvCreateImage(cvSize(512,512),IPL_DEPTH_8U,1);
 cvZero(bigimg); // czyszczenie pamięci zajętej przez zmienną
 cvResize(img,bigimg,CV_INTER_CUBIC);

 cvNamedWindow("Resized Image",1); // tworzę okno
 cvShowImage("Resized Image", bigimg); // wyswietlam obraz w
oknie
 cvWaitKey(0);
 cvReleaseImage(&img);
 cvReleaseImage(&img2);
 return 0;
}
W tym przypadku konieczne jest stworzenie nowej zmiennej do przechowywania obrazu. Do
stworzenia zmiennej, wskaźnika do zmiennej typu IplImage służy funkcja: cvCreateImage o
następującej składni:
IplImage* cvCreateImage(CvSize size, int depth, int channels);
Pierwsza zmienna to rozmiar obrazu. Drugi argument określa sposób kodowania kolorów w
obrazie i głębi bitową – można tu podać wartość liczbową (można ją znaleźć w dokumentacji)
lub wpisać odpowiednią predefiniowaną stałą:
IPL_DEPTH_8U - unsigned 8-bit integers
IPL_DEPTH_8S - signed 8-bit integers
IPL_DEPTH_16U - unsigned 16-bit integers
IPL_DEPTH_16S - signed 16-bit integers
IPL_DEPTH_32S - signed 32-bit integers
IPL_DEPTH_32F - single precision floating-point numbers
IPL_DEPTH_64F - double precision floating-point numbers

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. Żeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
12/12

Ostatni argument to liczba kanałów barw w obrazie – może mieć wartości od 1 do 4. Rozmiar
obrazu musi być zmienną typu CvSize. Można ją stworzyć za pomocą funkcji cvSize(int
szerokość, int wysokość).
Stworzony obraz zostanie później wypełniony wartościami. Czasem zachodzi potrzeba
stworzenia pustego obrazu, np. po to aby rysować na nim. W tym celu należy wyczyścić
zawartość obrazu za pomocą wykorzystanej tu funkcji void cvSetZero(CvArr* arr)
której argumentem jest wskaźnik do zerowanej tablicy typu CvArr. Można tu podać jako
argument także wskaźnik do zmiennej typu IplImage. Do zmiany rozmiarów obrazu
wykorzystano tu funkcję cvResize o następującej składni:
void cvResize(const CvArr* src, CvArr* dst, int interpolation);

Pierwszy argument to zmienna z obrazem źródłowym. Drugi argument to zmienna z obrazem
docelowym. Mogą to być zarówno macierze (jak w definicji funkcji) jak i zmienne typu
IplImage (jak w przykładzie). Ostatni argument określa sposób interpolacji. Dostępne są
cztery rodzaje interpolacji:
CV_INTER_NN - najbliższego sąsiedztwa,
CV_INTER_LINEAR – dwuliniowa (domyślna)
CV_INTER_AREA – interpolacja na podstawie sąsiednich bloków pikseli.
CV_INTER_CUBIC - sześcienna.

Kod programu zawiera projekt opcv_3
Do zrobienia:

- Pokazać skalowanie z innymi niż CV_INTER_CUBIC argumentem i porównać
wyniki

Korekcja jasności
OpenCV posiada zestaw funkcji arytmetycznych które mogą być wykonywane na
macierzach, także na macierzach reprezentujących obrazy. Korekcję jasności można wykonać
poprzez liniową transformację poziomów jasności (jak w przykładzie poniżej) lub poprzez
wyrównywanie histogramu (funkcja cvEqualizeHist). W przykładzie poniżej obraz źródłowy
jest argumentem x w wyrażeniu y = a*x+b, gdzie y jest obrazem wynikowym, a –
współczynnikiem skalującym, b – określa przesunięcie poziomu zerowego.
Korekcja poziomów jasności (liniowa bądź nie liniowa) powoduje zmianę jasności i kontrastu
obrazu.
int _tmain(int argc, _TCHAR* argv[])
{
 IplImage *img= cvLoadImage("E:\\lena.bmp",0);
 cvNamedWindow("Image", 1);
 cvShowImage("Image",img);
 IplImage *im_scal = cvCreateImage(cvSize(img->width,img->height),
 IPL_DEPTH_8U,1);
 cvConvertScaleAbs(img, im_scal, 2, 0);
 cvNamedWindow("Scaled image a=2 b=0", 1);
 cvShowImage("Scaled image a=2 b=0", im_scal);
 cvWaitKey(0);
 cvConvertScaleAbs(img, im_scal, 0.5, 0);
 cvNamedWindow("Scaled image a=0.5 b=0", 1);
 cvShowImage("Scaled image a=0.5 b=0", im_scal);
 cvWaitKey(0);
 cvConvertScale (img, im_scal, 1, 128);

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. Żeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
13/13

 cvNamedWindow("Scaled image a=1 b=128", 1);
 cvShowImage("Scaled image a=1 b=128", im_scal);
 cvWaitKey(0);
 cvEqualizeHist(img, im_scal);
 cvNamedWindow("Equalized histogram", 1);
 cvShowImage("Equalized histogram", im_scal);
 cvWaitKey(0);
 return 0;
}
Funkcja cvConvertScaleAbs wykonuje przekształcenie opisane powyżej dając w wyniku
obraz monochromatyczny z 8 bitową głębią kolorów – lub ściślej w tym przypadku,
poziomów jasności obrazu monochromatycznego (IPL_DEPTH_8U) i ma następujący
format:
cvConvertScaleAbs(const CvArr* src, CvArr* dst, double
scale=1, double shift=0);
Argumenty src i dst oznaczają odpowiednio obraz źródłowy i docelowy. Argument scale
to oczywiście współczynnik skalujący („a” w równaniu funkcji), natomiast shift to składnik
stały - przesunięcie (b w równaniu funkcji).
Można do tego wykorzystać także funkcję cvConvertScale która nie zmienia typu macierzy
wynikowej na reprezentację za pomocą 8 bitów (dzieki czemu można zmienną na obraz
wynikowy stworzyć przez kopiowanie zmiennej oryginalnej), lub za pomocą funkcji cvLUT
która wykorzystuje Look-Up-Table do wykonania transformacji.
Ostatnia z użytych funkcji cvEqualizeHist wykonuje operację wyrównywania histogramu.
Funkcja ta cvEqualizeHist(const CvArr* src, CvArr* dst) przyjmuje jako
argument wskaźnik do obrazu źródłowego src i wynikowego dst.

Kod programu zawiera projekt opcv_4
Do zrobienia:

- Jak przy użyciu funkcji cvConvertScaleAbs zrobić negatyw obrazu.
- Dobrać argumenty funkcji tak aby uzyskać zwiększenie kontrastu obrazu.
- Zastąpić funkcję cvConvertScaleAbs funkcją cvConvertScale i porównać wynik.

Korekcja jasności obrazów barwnych
Korekcja jasności i kontrastu obrazów barwnych może być wykonana w ten sam sposób. Dla
obrazów barwnych konieczne jest aby obraz wynikowy miał tą samą liczbę kanałów
barwnych. W przypadku obrazów barwnych nie można także bezpośrednio wykorzystać
funkcji wyrównywania histogramu ponieważ obsługuje ona tylko obrazy z jednym kanałem
(monochromatyczne).

int _tmain(int argc, _TCHAR* argv[])
{
 IplImage *img= cvLoadImage("E:\\lena_k.bmp",1);
 cvNamedWindow("Image", 1);
 cvShowImage("Image",img);
 IplImage *im_scal = cvCreateImage(cvSize(img->width,img->height),
 IPL_DEPTH_8U,img->nChannel);
 cvConvertScaleAbs(img, im_scal, 2, 0);
 cvNamedWindow("Scaled image a=2 b=0", 1);
 cvShowImage("Scaled image a=2 b=0", im_scal);
 cvWaitKey(0);

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. Żeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
14/14

 cvConvertScaleAbs(img, im_scal, 0.5, 0);
 cvNamedWindow("Scaled image a=0.5 b=0", 1);
 cvShowImage("Scaled image a=0.5 b=0", im_scal);
 cvWaitKey(0);
 cvConvertScale (img, im_scal, 1, 128);
 cvNamedWindow("Scaled image a=1 b=128", 1);
 cvShowImage("Scaled image a=1 b=128", im_scal);
 cvWaitKey(0);
 return 0;
}
Aby zachować zgodną liczbę kanałów w zmiennej źródłowej i docelowej wartość ta została
odczytana ze zmiennej źródłowej img->nChannels i podstawiona do funkcji cvCreateImage.

Kod programu zawiera projekt opcv_5
Do zrobienia:

- Jak przy użyciu funkcji cvConvertScaleAbs zrobić negatyw obrazu.
- Zastąpić funkcję cvConvertScaleAbs funkcją cvConvertScale i porównać wynik.

Manipulacja przestrzeniami barw
Obrazy barwne są kodowane za pomocą trzech składowych np. RGB (Red Green Blue), HLS
(Hue, Lightness, Saturation) czyli barwa, jasność, nasycenie, czy stosowanym w kodowaniu
plików JPEG standardzie YCrCb. OpenCV pozwala na rozkładanie obrazu na składowe i
przekształcanie między wymienionymi tu standardami i jeszcze kilkoma innymi formatami.
Poniższy przykład programu pokazuje rozkład obrazu kolorowego na składowe RGB i ich
wyświetlenie w osobnych oknach. Poniższy kod pokazuje zarówno wyświetlanie składowych
jak i konwersję przestrzeni barw dlatego został rozbity na dwie części:
int _tmain(int argc, _TCHAR* argv[])
{
 IplImage *imgc= cvLoadImage("E:\\lena_k.bmp",1);
 cvNamedWindow("Image", 1);
 cvShowImage("Image",imgc);

 // tworzenie obrazów dla poszczególnych kanałów.
 IplImage *kanal1 =
cvCreateImage(cvSize(256,256),IPL_DEPTH_8U,1);
 IplImage *kanal2 = cvCreateImage(cvSize(256,256),IPL_DEPTH_8U,1);
 IplImage *kanal3 = cvCreateImage(cvSize(256,256),IPL_DEPTH_8U,1);

 cvCvtPixToPlane(imgc,kanal1,kanal2,kanal3,0);

 cvNamedWindow("Kanal B",1);
 cvShowImage("Kanal B",kanal1);
 cvNamedWindow("Kanal G",1);
 cvShowImage("Kanal G",kanal2);
 cvNamedWindow("Kanal R",1);
 cvShowImage("Kanal R",kanal3);
 cvWaitKey(0);
 cvDestroyWindow("Kanal B");
 cvDestroyWindow("Kanal G");
 cvDestroyWindow("Kanal R");
 // cdn...

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. Żeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
15/15

Należy zwrócić uwagę że w openCV zamieniona jest kolejność kanałów barw podstawowych
na BGR (niebieski, zielony, czerwony). Przy wczytywaniu obrazów kolorowych należy
pamiętać aby podać odpowiedni parametr określający tryb otwarcia w funkcji cvLoadImage.
W tym przypadku drugi parametr powinien być równy 1. Obrazy reprezentujące poszczególne
kanały są monochromatyczne z 8 bitową głębią kolorów dlatego przed rozdzieleniem obrazu
na składowe należy przygotować odpowiednie zmienne korzystając z funkcji cvCreateImage.
Należy przy tym pamiętać aby wielkość obrazów była taka sama jak obrazu źródłowego (w
przykładzie podano ją od razu liczbami). Do wydzielenia obrazów poszczególnych kanałów
barwnych służy funkcja cvCvtPixToPlane(const CvArr* src, CvArr* dst0,
CvArr* dst1, CvArr* dst2, CvArr* dst3), w której argument src jest obrazem
źródłowym a argumenty dst0, dst1,... są wskaźnikami do zmiennych reprezentujących kolejne
kanały obrazu wydzielone w wyniku działania funkcji. Poszczególne obrazy są następnie
wyświetlone w analogiczny sposób jak w poprzednich przykładach.
Dla zachowania przejrzystości aplikacji przed następnym krokiem usunięto okna
wyświetlające obrazy kanałów za pomocą funkcji cvDestroyWindow(const char* name),
która jako argument wymaga podania nazwy okna.
Jeśli chcemy przekształcić obraz do innej przestrzeni barw np. YCrCb należy wykorzystać
funkcję cvCvtColor, której wykorzystanie ilustruje dalszy fragment kodu programu:
//...cd
 IplImage *img2 = cvCloneImage(imgc);
 cvCvtColor(imgc,img2,CV_RGB2YCrCb); //konwersja do YCrCb
 cvNamedWindow("kolory",1);
 cvShowImage("kolory",img2);
 cvCvtPixToPlane(img2,kanal1,kanal2,kanal3,0);
 cvNamedWindow("Kanal Y",1);
 cvShowImage("Kanal Y",kanal1);
 cvNamedWindow("Kanal Cr",1);
 cvShowImage("Kanal Cr",kanal2);
 cvNamedWindow("Kanal Cb",1);
 cvShowImage("Kanal Cb",kanal3);
 cvWaitKey(0);
 return 0;
}
Funkcja cvCvtColor(const CvArr* src, CvArr* dst, int code) jako
argumenty wymaga podania wskaźnika do obrazu źródłowego, wskaźnika do obrazu
wynikowego o tej samej co źródłowy strukturze (tu wykorzystano do jego stworzenia funkcje
kopiowania zmiennej obrazowej) oraz kod reprezentujący rodzaj konwersji. Kod konwersji
może przyjmować wartości które tworzy się w następujący sposób:
CV_<przestrzeń_wejściowa>2<przestrzeń_wyjściowa>, gdzie <przestrzeń_wejściowa> i
<przestrzeń_wyjściowa> mogą przyjmować wartości: RGB, BGR, XYZ, YCrCb, HSV, HLS,
Lab, Luv, BayerBG, BayerGB,... Na przykład konwersja między z przestrzeni RGB do HSV
będzie miała kod CV_RGB2HSV i analogicznie konwersja odwrotna będzie miała kod
CV_HSV2RGB.

Kod programu zawiera projekt opcv_6
Do zrobienia:

- Wykonać konwersję do przestrzeni HLS, wyświetlić poszczególne kanały, wykonać
np. progowanie jednego lub więcej kanałów i pokazać obraz wynikowy.

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. Żeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
16/16

Filtracja
Filtracja w dziedzinie przestrzennej może być wykonana za pomocą zdefiniowanej funkcji
cvSmooth, która realizuje filtry „wygładzające” - dolnoprzepustowe, filtru górno
przepustowego typu laplacea cvLaplace, filtrów do detekcji krawędzi cvSobel. Może być
także przeprowadzona za pomocą funkcji cvFilter2D, która pozwala na użycie dowolnej
zdefiniowanej maski filtru. W większości przypadków wymienione funkcje mogą być
stosowane
W pierwszym fragmencie kodu programu pokazano przykłady filtracji dolno i górno
przepustowej za pomocą pojedynczych funkcji cvSmooth i cvLaplace.
int _tmain(int argc, _TCHAR* argv[])
{
 IplImage *img= cvLoadImage("E:\\lena_k.bmp",1);
 cvNamedWindow("Image", 1);
 cvShowImage("Image",img);

 IplImage *imgf = cvCloneImage(img);
 cvSmooth(img, imgf, CV_BLUR, 5, 5);

 cvNamedWindow("Rozmywanie", 1);
 cvShowImage("Rozmywanie",imgf);

 cvSmooth(img, imgf, CV_GAUSSIAN, 5,5);
 cvNamedWindow("Rozmywanie Gaussa", 1);
 cvShowImage("Rozmywanie Gaussa",imgf);

 cvWaitKey(0);
// usunąć niepotrzebne okna funkcjami cvDestroyWindow(...)
// cdn...
Funkcja filtrująca dolnoprzepustowo (rozmywanie) cvSmooth(const CvArr* src,
CvArr* dst, int smoothtype=CV_GAUSSIAN, int param1=3, int
param2=0, double param3=0) wymaga jako argument podania wskaźników do
obrazu źródłowego src i wynikowego dst, następnie typu wykonywanej filtracji smoothtype
oraz parametrów tej filtracji określonych trzema kolejnymi wartościami param1, param2 i
param3. Argument smoothtype może przyjmować wartości:
CV_BLUR filtr rozmywający o wielkość param1 x param2;
CV_GAUSSIAN filtr rozmywający Gaussa o rozmiarach param1 x param2 lub jeśli param1 i 2
są równe 0, to filtr definiowany jest na podstawie parametru sigma funkcji gaussowskiej
określonej przez param3. Jeśli param 2 i 3 są równe 0 to filtr ma rozmiary param1 x param2.
CV_MEDIAN filtr medianowy o masce filtru param1 x param1
CV_BILATERAL filtr rozmywający gaussa zachowujący krawędzie o rozmiarach 3x3 piksele z
dodatkowymi parametrami filtru określanymi przez param1 i param2.

W przypadku filtrów górno przepustowych należy zwrócić uwagę na głębie bitową
przetwarzanego obrazu i odpowiednie skalowanie wartości wynikowego obrazu przed jego
wyświetleniem, co pokazano w dalszej części kodu programu:
// cd...

 IplImage *imgf_16s = cvCreateImage(cvSize(img->width, img->height),
 IPL_DEPTH_16S,1);

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. Żeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
17/17

 IplImage *imgf_8u = cvCreateImage(cvSize(img->width,
 img->height),IPL_DEPTH_8U,1);
 cvLaplace(img, imgf_16s, 1);
 cvConvertScaleAbs(imgf_16s,imgf_8u,1,0);

 cvNamedWindow("Filtracja Laplacea", 1);
 cvShowImage("Filtracja Laplacea",imgf_8u);

 cvSobel(img,imgf_16s,1,0,3);
 cvConvertScaleAbs(imgf_16s,imgf_8u,1,0);
 cvNamedWindow("Filtracja Sobela - pion", 1);
 cvShowImage("Filtracja Sobela - pion",imgf_8u);

 cvSobel(img,imgf_16s,0,1,3);
 cvConvertScaleAbs(imgf_16s,imgf_8u,1,0);
 cvNamedWindow("Filtracja Sobela - poziom", 1);
 cvShowImage("Filtracja Sobela - poziom",imgf_8u);

 cvWaitKey(0);

 return 0;
}
Ze względu na możliwe wyjście poza zakres dopuszczalności dla 8 bitowej głębi barw w
wyniku zastosowania funkcji cvLaplace czy cvSobel, wymagają one zmiennej dla obrazu
wynikowego o głębi bitowej typu IPL_DEPTH_16S (16 bitowe liczby ze znakiem - tu
zmienna imgf_16s). Można potem obraz wynikowy przekształcić z powrotem do
IPL_DEPTH_8U (8 bitowe liczby bez znaku - tu zmienna imgf_8u), za pomocą funkcji
cvConvertScaleAbs z parametrami takimi jak w przykładowym kodzie.
Funkcja cvLaplace(const CvArr* src, CvArr* dst, int aperture_size=3) wyznacza laplasjan
obrazu czyli dokonuje filtracji obrazu funkcją o charakterystyce będącej odwróconą krzywą
gausowską. Jako argumenty wymaga podania wskaźnika do zmiennej źródłowej src i
wynikowej dst oraz rozmiaru filtru (domyślnie jest to wartość 3).
Kolejna funkcja cvSobel(const CvArr* src, CvArr* dst, int xorder,
int yorder, int aperture_size=3), jest wykorzystywana do wyznaczania
krawędzi. Jako argumenty wymaga podania wskaźnika do zmiennej źródłowej src i
wynikowej dst oraz parametrów xorder i yorder które określają które kierunki krawędzi
zostaną uwypuklone w obrazie (dla xorder =0 yorder=1 będą to krawędzie poziome, jeżeli
zamienimy wartości będą to krawędzie pionowe), oraz rozmiaru filtru (domyślnie jest to
wartość 3). Należy przy tym pamiętać że rozmiar filtru musi być większy niż wartości xorder
i yorder.

Kod programu zawiera projekt opcv_7
Funkcja cvFilter2D pozwala wykonać filtrację obrazu przy użyciu dowolnie zdefiniowanej
maski filtru przestrzennego. Definicję filtru uśredniającego 3x3 oraz filtracje pokazuje
poniższy kod:
int _tmain(int argc, _TCHAR* argv[])
{
 IplImage *img = cvLoadImage("E:\\lena_k.bmp",1);
 IplImage *im_filter = cvCloneImage(img);
 cvNamedWindow("Orginal image", 1);

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. Żeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
18/18

 cvShowImage("Orginal image", img);

 CvMat* filtr = cvCreateMat(3,3,CV_32FC1);
 cvSet2D(filtr,0,0,cvRealScalar(0.11));
 cvSet2D(filtr,0,1,cvRealScalar(0.11));
 cvSet2D(filtr,0,2,cvRealScalar(0.11));
 cvSet2D(filtr,1,0,cvRealScalar(0.11));
 cvSet2D(filtr,1,1,cvRealScalar(0.11));
 cvSet2D(filtr,1,2,cvRealScalar(0.11));
 cvSet2D(filtr,2,0,cvRealScalar(0.11));
 cvSet2D(filtr,2,1,cvRealScalar(0.11));
 cvSet2D(filtr,2,2,cvRealScalar(0.11));
 cvFilter2D(img, im_filter, filtr, cvPoint(-1,-1));
 cvNamedWindow("Filtered image", 1);
 cvShowImage("Filtered image", im_filter);

 cvWaitKey(0);
 return 0;
}
Maskę filtru definiuje się w postaci macierzy prostokątnej (tu o rozmiarach 3x3). Służy do
tego zmienna typu CvMat. Macierz tworzy się używając funkcji CvMat* cvCreateMat(
int rows, int cols, int type), która zwraca wskaźnik do macierzy. Jako
argumenty należy podać liczbę wierszy – rows i kolumn – cols, oraz typ wartości
przechowywanych w macierzy (tu CV_32FC1 – 32 bitowe liczby zmiennoprzecinkowe).
Następnie należy ustawić wartość każdego z elementów macierzy przy użyciu funkcji void
cvSet2D(CvArr* arr, int idx0, int idx1, CvScalar value). Jako
argumenty należy podać wskaźnik do macierzy której element będzie ustawiany arr, pozycje
w macierzy poprzez określenie wiersza idx0 i kolumny idx1 oraz wartość typu CvScalar.
Odpowiedni typ zmiennej został tu uzyskany przy użyciu funkcji cvRealScalar z argumentem
będącym wymaganą wartością liczbową.
Przy użyciu sdefiniowanej macierzy można przefiltrować obraz używając funkcji
cvFilter2D(const CvArr* src, CvArr* dst, const CvMat* kernel,
CvPoint anchor=cvPoint(-1,-1)). Funkcja wymaga podania jako argumentu
wskaźników do zmiennej źródłowej i docelowej src i dst (może to być ta sama zmienna),
wskaźnika do macierzy definiującej maskę filtru i pozycję filtrowanego punktu obrazu
względem maski filtru. Domyślna wartość dla maski 3x3 wskazuje na jej środkowy element.
Pozycja ta jest określona jako wartości typu CvPoint. W tym przykładzie stworzona została za
pomocą funkcji cvPoint z argumentami –1, –1 określającymi właśnie ten centralny punkt
maski.

Kod programu zawiera projekt opcv_7a
Do zrobienia:

- Zaprojektować filtry górno-przepustowy i pokazać przykład jego działania z maską:
 0 -1 0 0 -1 0
f1= -1 4 -1 f2= -1 5 -1
 0 -1 0 0 -1 0

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. Żeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
19/19

Segmentacja obrazu - Progowanie
Progowanie jest najprostszą techniką segmentacji obrazu. W przypadku segmentacji na
podstawie jasności polega ono na przypisaniu pikselom obrazu o jasności większej od
wartości progowej maksymalnej jasności (kolor biały) natomiast pikselom ciemniejszym od
wartości progowej jasności zerowej (kolor czarny). Funkcja progowania dostępna w OpenCV
pozwala na inny sposób progowania obrazu w zależności o podanych argumentów funkcji.
Progowanie może być wykonane na obrazach o monochromatycznych i barwnych.

int _tmain(int argc, _TCHAR* argv[])
{
 IplImage *img = cvLoadImage("E:\\lena.bmp",0);
 cvNamedWindow("Orginal image", 1);
 cvShowImage("Orginal image", img);
 IplImage *im_thres = cvCreateImage(cvSize(img->width, img-
>height), IPL_DEPTH_8U,1);
 cvThreshold(img,im_thres, 128, 255, CV_THRESH_BINARY);
 cvNamedWindow("Thresholded image", 1);
 cvShowImage("Thresholded image", im_thres);
 cvWaitKey(0);
 return 0;
}
Do progowania obrazu służy w OpenCV funkcja cvThreshold(const CvArr*
src, CvArr* dst, double threshold, double max_value, int
threshold_type), w której pierwszy i drugi argument to odpowiednio obraz źródłowy
src i docelowy dst. Trzeci argument threshold to wartość progowa. Argument kolejny
max_value to maksymalna jasność w obrazie. Przy określaniu tych dwóch wartości należy
brać pod uwagę głębię bitową obrazu (dla IPL_DEPTH_8U wartość maksymalna to 255,
natomiast dla IPL_DEPTH_16S to 65535). Ostatni argument określa sposób progowania.
Możliwe jest przeprowadzenie tej operacji na pięć różnych sposobów które określane są
odpowiednimi stałymi:
CV_THRESH_BINARY: dst(x,y) = max_value, jeśli src(x,y)>threshold jeśli nie to: dst(x,y) =0,
CV_THRESH_BINARY_INV: dst(x,y) = 0, if src(x,y)>threshold jeśli nie to: dst(x,y) =max_value,
CV_THRESH_TRUNC: dst(x,y) = threshold, jeśli src(x,y)>threshold jeśli nie to: dst(x,y) =src(x,y),
CV_THRESH_TOZERO: dst(x,y) = src(x,y), jeśli src(x,y)>threshold jeśli nie to: dst(x,y) =0,
CV_THRESH_TOZERO_INV: dst(x,y) = 0, jeśli src(x,y)>threshold jeśli nie to: dst(x,y) =src(x,y).
Oprócz progowania ze stałym progiem OpenCV zawiera także funkcję w której wartość
progowa dobierana jest w zależności od lokalnych cech obrazu – cvAdaptiveThreshold.

Kod programu zawiera projekt opcv_8
Do zrobienia:

- Wykonać progowanie z innymi wartościami określającymi rodzaj operacji niż
CV_THRESH_BINARY

 Interakcja z użytkownikiem
OpenCV oprócz narzędzi do przetwarzania obrazów wyposażono w skromne narzędzie do
kontroli procesu przetwarzania. Można oczywiście podawać parametry przetwarzania z
konsoli tekstowej – raczej niepraktyczne w przypadku np. przetwarzania sygnału z kamery,
lub wykorzystać kontrolki systemowe. W prostych zastosowaniach można wykorzystać
„suwaki” wbudowane w bibliotekę OpenCV.

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. Żeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
20/20

Użycie suwaków (Trackbar) do zmiany parametrów przetwarzania
Do obsługi suwaków zaimplementowano w OpenCV kilka funkcji i można z nich korzystać
na różne sposoby Do obsługi suwaka służą funkcje cvCreateTrackbar, cvGetTrackbarPos i
cvSetTrackbarPos. W każdym przypadku konieczne jest w pierwszym kroku stworzenie
trackabara przy użyciu funkcji:
cvCreateTrackbar(const char* trackbar_name, const char* window_name, int* value, int
count, CvTrackbarCallback on_change). Kolejne argumenty tej funkcji oznaczają:
trackbar_name – łańcuch znaków oznaczający nazwę suwaka
window_name – łańcuch znaków oznaczający nazwę okna w którym umieszczony jest suwak
value – wskaźnik do liczby typu int określającej pozycję suwaka oraz definiującej początkową
jego pozycję,
count – maksymalna pozycja suwaka (minimum jest równe 0).
on_change – wskaźnik do funkcji która będzie uruchamiana przy każdej zmianie położenia
suwaka. Musi ona zwracać argument typu void. Może być także równy NULL, wtedy żadna
funkcja nie będzie wykonywana.
W poniższym przykładzie wykorzystano ostatni argument funkcji cvCreateTrackbar i cały
proces przetwarzania zamieszczono nie w głównej funkcji programu a w funkcji treshold(...).
Aby program działał prawidłowo na początku kodu aplikacji należy zadeklarować zmienne do
przechowywania obrazu źródłowego (zmienna typy IplImage) i wartości progowej (w tym
przypadku może to być zmienna typu int).

IplImage *img;
int value=128;

void treshold(int a)
{
 IplImage *im_thres = cvCreateImage(cvSize(img->width, img->height),
 IPL_DEPTH_8U,1);
 cvThreshold(img,im_thres, value, 255, CV_THRESH_BINARY);
 cvShowImage("Thresholded image", im_thres);
 cvReleaseImage(&im_thres);
}

int _tmain(int argc, _TCHAR* argv[])
{
 img= cvLoadImage("E:\\lena.bmp",0);
 cvNamedWindow("Image", 1);
 cvShowImage("Image",img);
 cvNamedWindow("Thresholded image", 1);

 cvCreateTrackbar("próg","Thresholded image",&value,255,treshold);

 cvWaitKey(0);
 cvReleaseImage(&img);
 return 0;
}
W tym przypadku suwak przypisano do okna w którym wyświetlany jest obraz po
progowaniu dlatego też odpowiednie okno musi być stworzone funkcją cvNamedWindow
przed stworzeniem suwaka. Można także stworzyć okno w którym wyświetlany będzie tylko
suwak lub suwaki.

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. Żeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
21/21

Można także wykorzystać funkcję cvGetTrackbarPos do odczytywania pozycji, bez
definiowania funkcji wykonującej przetwarzanie. Trzeba wtedy przed wykonanie operacji
odczytać położenie suwaka (może on być wtedy użyty jako przełącznik. Można także
programowo (cvSetTrakckbarPos) ustawić pozycję i wykorzystać suwak jako wskaźnik
postępu jakiegoś procesu.

Kod programu zawiera projekt opcv_14
Do zrobienia:

- Zmodyfikować aplikację tak aby suwaki były w osobnym oknie.
- Zastosować suwaki do innego rodzaju operacji, np. skalowania jasności, lub

powiększenia.

 Przetwarzanie sekwencji wideo.

W openCV zaimplementowano możliwość przechwytywania obrazu z pliku z sekwencją
wideo jak i z kamery. Użytkownik nie musi znać szczegółów dotyczących sposobu kompresji
i kodowania filmów ponieważ funkcje OpenCV wykorzystują zainstalowane w systemie
sterowniki.

Odczyt i przetwarzanie obrazów z sekwencji wideo.
OpenCV zawiera zestaw funkcji potrzebnych do obsługi przetwarzania wideo, czyli
otwierania i zamykania plików oraz przechwytywania strumienia danych oraz pojedynczych
klatek sekwencji. Przetwarzanie sekwencji wideo polega przetwarzaniu kolejno pobieranych z
sekwencji klatek. W uproszczeniu należy w tym celu stworzyć zmienną zawierającą strumień
danych z pliku wideo, następnie pobrać klatkę z obrazu z sekwencji, skopiować ją do
zmiennej przechowującej obraz na której będzie można wykonać przetwarzani (tu będzie to
zmienna typu IplImage). Uzyskany w ten sposób obraz można teraz przetwarzać lub
wyświetlać.
W przykładzie poniżej pokazano kod aplikacji który tylko wyświetla sekwencję wideo aby
pokazać kolejność działań przy obsłudze plików wideo.
int _tmain(int argc, _TCHAR* argv[])
{
// tworzę strumień video z pliku
 CvCapture* capture = cvCaptureFromAVI("E:\\wideo1.avi");
 IplImage* img = 0;
 cvNamedWindow("seq", 1);

 while(cvGrabFrame(capture))
 {
 img=cvRetrieveFrame(capture); // kopiuję klatkę do obrazu
 cvShowImage("seq",img); // wyświetlanie
 cvWaitKey(100); // czekam 100ms przed następną klatką
 }
 cvWaitKey(0); // czekam na wciśniecie klawisza aby
zakończyć program
 cvReleaseCapture(&capture);
 return 0;
}

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. Żeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
22/22

W pierwszym kroku tworzony jest wskaźnik do strumienia wideo z pliku. Odpowiednia
zmienna typu CvCapture tworzona jest funkcją cvCaptureFromFile(const char*
filename), która jako argument wymaga podania ścieżki do pliku z filmem. Aby
odtworzyć cały film należy w pętli przechwytywać kolejne klatki sekwencji. W warunku pętli
while sprawdzane jest czy funkcja cvGrabFrame zwraca wartość inną niż zero i jeśli tak jest
to wykonywany ciąg instrukcji wewnątrz pętli. Funkcja cvGrabFrame(CvCapture*
capture) zwraca wartość różną od zera jeśli uda się pobrać klatkę ze strumienia do,
którego wskaźnik jest podany jako argument funkcji. Klatka ta nie jest od razu dostępna ze
względu na możliwości uzyskania jak najszybszego przechwytywania obrazu. Wewnątrz
pętli, obraz z przechwyconej klatki jest zapisywany do zmiennej typu IplImage (tu zmienna
img), która jest następnie wyświetlana w utworzonym wcześniej oknie. Kopiowanie obrazu ze
strumienia do zmiennej typu IplImage wykonuje się przy użyciu funkcji
cvRetrieveFrame(CvCapture* capture), której argumentem jest wskaźnik do
strumienia wideo a zwracana jest ostatnio przechwycona klatka tego strumienia.
Aby aplikacja zdążyła wyświetlić obraz przed przejściem do następnego cyklu w pętli
konieczne jest dodanie opóźnienia przy użyciu funkcji cvWaitKey. W tym przypadku jako
argument podano wartość 100 co oznacza 100ms oczekiwania na wciśnięcie klawisza i
przejście do kolejnego wykonania instrukcji z pętli.
Po zakończeniu korzystania ze strumienia wideo należy go zamknąć funkcją
cvReleaseCapture(CvCapture** capture), która jako argumentu wymaga
podania wskaźnika do strumienia wideo.
Aby przetwarzać kolejne klatki sekwencji należy wewnątrz pętli dodać operacje wykonujące
przetwarzanie obrazu:
//...
while(cvGrabFrame(capture))
{
 img=cvRetrieveFrame(capture); // kopiuję klatkę do obrazu

 cvConvertScale(img, img, 2.5, 0); // skalowanie jasności

 cvShowImage("seq",img); // wyświetlanie
 cvWaitKey(10);
}
//...
W pokazanym tu fragmencie, do pętli w której pobierane są kolejne klatki filmu, pomiędzy
pobieranie obrazu a wyświetlanie go, wstawiono funkcję skalowania jasności i dopiero jej
wynik został wyświetlony. W podobny sposób można wykonać inne operacje. Jeżeli operacje
przetwarzania obrazu wymagają wykorzystania dodatkowych zmiennych to powinny one być
utworzone przed pętlą.

Kod programu zawiera projekt opcv_15
Do zrobienia:

- Zmodyfikować program do odtwarzania sekwencji wideo tak aby przetwarzał on
kolejne klatki wykonując dowolną operację filtracji.

