

Instrukcja współfinansowana przez Unię Europejską
w ramach Europejskiego Funduszu Społecznego

w projekcie

„Innowacyjna dydaktyka bez ograniczeń

– zintegrowany rozwój Politechniki Łódzkiej – zarządzanie Uczelnią,

 nowoczesna oferta edukacyjna i wzmacniania zdolności

do zatrudniania osób niepełnosprawnych”

Instrukcja jest dystrybuowana bezpłatnie.

90-924 Łódź, ul. śeromskiego 116,
tel. 042 631 28 83
www.kapitalludzki.p.lodz.pl

Instrukcja do laboratorium, część 2.

Piotr M. Szczypiński

Programy komputerowe do
przetwarzania i analizy obrazów oraz
wideo

Zestawienie praktycznych informacji dotyczących
programowania na potrzeby przetwarzania obrazów

Zadanie nr 13 – Studia podyplomowe „Przetwarzanie i analiza obrazów biomedycznych”

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. śeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
2/18

Wstęp – dlaczego programowanie
Umiejętność programowania w językach kompilowanych jest przydatna a często nieodzowna

do rozwiązania nietypowych problemów związanych z przetwarzaniem obrazów. Gotowe

programy do edycji i przetwarzania obrazów, takie jak GIMP lub ImageJ, opracowano tak,

aby umoŜliwiały wykonywanie typowych operacji na obrazach. UmoŜliwiają one

przeprowadzenie podstawowych filtracji, korekcji barwy obrazu oraz segmentację. Wymagają
one ponadto duŜego zaangaŜowania osoby obsługującej taki program i praktycznie nie dają
moŜliwości pełnej automatyzacji procesu przetwarzania w przypadku duŜej liczby obrazów.

Do rozwiązania problemów nietypowych, uruchomienia sekwencji metod lub przygotowania

algorytmu „szytego na miarę” konieczne jest opracowanie własnego programu

komputerowego. Program taki moŜna utworzyć wykorzystując bądź to interpretowane języki

programowania (tekst programu jest analizowany podczas jego wykonywania), bądź
kompilowane (tekst programu jest tłumaczony na kod maszynowy przed jego wykonaniem).

W przypadku języków kompilowanych, tekst programu tłumaczony jest na kod maszynowy

programu (zrozumiały dla procesora, bezpośrednio sterujący pracą procesora). Tworzony jest

program wynikowy – wykonywalny. Podczas wykonywania takiego programu, procesor nie

traci czasu na analizę tekstu źródłowego. Przewagą języków kompilowanych nad

interpretowanymi jest zatem większa szybkość działania. Przykładami kompilowanych

języków programowania są języki C i C++. W ramach zajęć, do tworzenia programów w

językach C i C++ wykorzystane zostanie środowisko programistyczne Microsoft Visual

Studio C++.

Tworząc program komputerowy wykorzystujemy zazwyczaj tzw. biblioteki funkcji

(procedur). Biblioteki funkcji są modułami, które dołącza się do własnoręcznie pisanych

programów. Biblioteki zawierają przydatne procedury napisane przez innych programistów. Z

procedur zawartych w bibliotekach moŜna korzystać we własnym programie. Nie ma

wówczas potrzeby pisania własnej procedury o ile taka procedura została juŜ prze kogoś
napisana i udostępniona w formie biblioteki. Korzystanie z bibliotek znacznie usprawnia i

ułatwia pracę programistyczną. Jedną z bibliotek przydatną podczas programowania na

potrzeby przetwarzania obrazów jest OpenCV.

Cel
Celem jest zdobycie podstawowych umiejętności dotyczące programowania w języku C i

C++. Umiejętności te powinny umoŜliwić pisanie własnych programów do przetwarzania

dwuwymiarowych, rastrowych obrazów cyfrowych.

Cele szczegółowe:

1. Zrozumienie róŜnicy między językami interpretowanymi a kompilowanymi.

2. Zaznajomienie się z prostymi programami w C i C++.

3. Umiejętność utworzenie projektu programu w środowisku programistycznym.

4. Zrozumienie celu kompilacji, konsolidacji i debuggowania.

5. Zrozumienie pojęcia biblioteki funkcji.

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. śeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
3/18

6. Umiejętność stworzenia prostej biblioteki funkcji oraz wykorzystującego ją
programu.

Podstawowe pojęcia
PoniŜej znajdują się definicja cytowane za http://pl.wikipedia.org/

Aby program napisany w danym języku mógł być wykonany, niezbędne jest odpowiednie przetworzenie jego

kodu źródłowego:

• Kompilacja – kod źródłowy jest tłumaczony do postaci kodu maszynowego, czyli sekwencji

elementarnych operacji gotowych do bezpośredniego przetworzenia przez procesor komputera. JeŜeli

dany język programowania podlega kompilacji, określany jest mianem kompilowanego języka

programowania.

• Interpretacja – kod źródłowy jest na bieŜąco tłumaczony i wykonywany przez dodatkowy program

zwany interpreterem. JeŜeli język podlega interpretacji, nazywany jest interpretowanym językiem

programowania.

Kompilacja to proces automatycznego tłumaczenia kodu napisanego w języku programowania na kod

maszynowy. Dane wejściowe najczęściej nazywa się kodem źródłowym. Program wykonujący tłumaczenie to

kompilator. PrzewaŜnie kompilacja jest częścią większego procesu tłumaczenia, tworzony w jej trakcie kod

wynikowy jest przekazywany do innych programów (np. linkera), moŜliwe jest równieŜ tłumaczenie do postaci

zrozumiałej dla człowieka.

Kod maszynowy to postać programu komputerowego (zwana postacią wykonywalną lub binarną) przeznaczona

do bezpośredniego lub prawie bezpośredniego wykonania przez procesor. Jest ona dopasowana do konkretnego

typu procesora i wyraŜona w postaci rozumianych przez niego kodów rozkazów i ich argumentów. Jest to postać
trudna do analizy przez człowieka.

Konsolidacja (linkowanie od ang. link - łączyć) to proces polegający na połączeniu skompilowanych modułów

(plików zawierających kod obiektowy lub plików bibliotek statycznych) i utworzeniu pliku wykonywalnego lub

rzadziej innego pliku obiektowego. Dodatkowo podczas konsolidacji do pliku wynikowego mogą być dołączone

odpowiednie nagłówki i informacje charakterystyczne dla konkretnego formatu pliku wykonywalnego.

Debug tool, Debugger (czytaj debager - z ang. odpluskwiacz) – program komputerowy słuŜący do dynamicznej

analizy innych programów, w celu odnalezienia i identyfikacji zawartych w nich błędów, zwanych z

angielskiego bugami (robakami). Proces nadzorowania wykonania programu za pomocą debuggera określa się
mianem debugowania.

Podstawowym zadaniem debuggera jest sprawowanie kontroli nad wykonaniem kodu, co umoŜliwia

zlokalizowanie instrukcji odpowiedzialnych za wadliwe działanie programu. Współczesne debuggery pozwalają
na efektywne śledzenie wartości poszczególnych zmiennych, wykonywanie instrukcji krok po kroku czy

wstrzymywanie działania programu w określonych miejscach. Debugger jest standardowym wyposaŜeniem

większości współczesnych środowisk programistycznych.

Narzędzia: edytor tekstu źródłowego, kompilator, konsolidator i debugger

stanowią elementy składowe zintegrowanego środowiska programistycznego

Zintegrowane środowisko programistyczne (ang. Integrated Development Environment, IDE) jest to aplikacja

lub zespół aplikacji (środowisko) słuŜących do tworzenia, modyfikowania, testowania i konserwacji

oprogramowania.

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. śeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
4/18

Aplikacje będące zintegrowanymi środowiskami programistycznymi charakteryzują się tym, Ŝe udostępniają
złoŜoną, wieloraką funkcjonalność obejmującą edycję kodu źródłowego, kompilowanie kodu źródłowego,

tworzenie zasobów programu (tzn. formatek / ekranów / okien dialogowych, menu, raportów, elementów

graficznych takich jak ikony, obrazy itp.), tworzenie baz danych, komponentów i innych.

Etapy tworzenia programu

Program: Biblioteka:

Tworzenie programu komputerowego polega na utworzeniu projektu programu, jego

kompilacji, konsolidacji, analizie jego działania oraz wprowadzania ew. korekt. Tworzenie

projektu polega na określeniu liczby i rodzaju plików źródłowych, wykorzystywanych

bibliotek, konfiguracji sposobu kompilacji i konsolidacji. Kolejnym etapem jest napisanie

Tekst źródłowy
(pliki .h, .c i .cpp.)

Konsolidacja

Linker

Kompilacja

Compiler

Kod maszynowy

(plik .obj)

Program

wynikowy (.exe)

Tekst źródłowy
(pliki .h, .c i .cpp.)

Konsolidacja

Librerian

(Linker

bibliotek)

Kompilacja

Compiler

Kod maszynowy

(pliki .obj)

Wynikowa

biblioteka (lib, dll)

Tekst źródłowy
(pliki .h, .c i .cpp.)

Kompilacja

Compiler

Kod maszynowy

(plik .obj)

Debugowanie

analiza działania

programu

Tworzenie projektu

oraz edycja kodów

źródłowych

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. śeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
5/18

tekstów źródłowych naszego programu bądź modułu programu (np. biblioteki). Po napisaniu

programu program jest kompilowany i konsolidowany. Jest to proces automatycznie

przeprowadzany przez środowisko programistyczne. Podczas tego procesu środowisko

sprawdza czy program został napisany poprawnie: jeśli nie – informuje o błędach, jeśli tak –

tworzy końcowy program wykonywalny. Kolejnym etapem jest analiza sposobu działania

programu (debugowanie), czy program działa zgodnie z oczekiwaniami.

Tworząc projekt naleŜy podać informacje potrzebne kompilatorowi i konsolidatorowi

(linkerowi). Niewłaściwe informacje lub ich brak moŜe uniemoŜliwić wytworzenie programu

wynikowego lub spowodować, Ŝe program wynikowy nie będzie działał zgodnie z

oczekiwaniami.

Co musi „wiedzieć” kompilator:

1. Gdzie znajdują się pliki do skompilowania i pliki z deklaracjami (opisem) funkcji

bibliotecznych (podajemy nazwy katalogów, tzw. ścieŜki dostępu).

2. Które pliki przeznaczone są do skompilowania (pliki widoczne są jako elementy

składowe projektu)

Co musi „wiedzieć” linker:

3. Gdzie znajdują się pliki bibliotek dołączanych do programu (podajemy nazwy

katalogów, tzw. ścieŜki dostępu).

4. Musi znać listę plików obiektowych (z kodem maszynowym) i bibliotek, które ma ze

sobą połączyć.

Decyzję o tym czy celem projektu będzie tworzenie biblioteki czy programu dokonuje się
podczas tworzenia nowego projektu. W środowisku Visual Studio w celu utworzenia nowego

projektu naleŜy wybrać opcję: File-> New->Project. Wykorzystując kreator projektu w

kolejnych okienkach podajemy informacje dotyczące tego, jaki projekt chcemy utworzyć. Do

wyboru mamy projekt programu z interfejsem graficznym (Windows application), program

konsolowy, działający w trybie tekstowym (Console application), oraz biblioteki dołączane

statycznie (Static library) lub dynamicznie (DLL).

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. śeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
6/18

Tworzenie projektu programu wykorzystującego OpenCV

Utworzenie nowego projektu

1. Uruchomić Visual Studio C++ Express Edition

2. NaleŜy wybrać: File-> New->Project

3. Korzystając z kreatora projektów wybrać rodzaj projektu dla systemu 32-bitowego

(Win32), aplikacja konsolowa (Console application), podać nazwę projektu i katalog, w

którym ma zostać utworzony.

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. śeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
7/18

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. śeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
8/18

4. Po utworzeniu projektu pojawia się okno środowiska programistycznego

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. śeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
9/18

Edycja kodu źródłowego

5. NaleŜy dokonać edycji pliku źródłowego projektu (plik z rozszerzeniem .cpp). NaleŜy

pamiętać o dodaniu plików nagłówkowych bibliotek. (Przykładowy tekst źródłowy korzysta z

biblioteki OpenCV i zawiera odpowiednie pliki nagłówkowe).

Ustawienie parametrów kompilacji i konsolidacji

6. Klikamy prawym guzikiem myszy na wytłuszczonej nazwie projektu w panelu Solution

Explorer i wybieramy właściwości (Properties).

7. Upewniamy się czy na komputerze zainstalowane są biblioteki OpenCV. Sprawdzamy

gdzie znajdują się pliki nagłówkowe (.h) i pliki bibliotek (.lib).

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. śeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
10/18

8. Wybieramy opcje kompilatora (C/C++) i uzupełniamy opcję Additional Include Directories

podając nazwy folderów zawierających pliki nagłówkowe biblioteki OpenCV.

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. śeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
11/18

9. Wybieramy opcje Linker->General i w polu Additional Library Directories dodajemy

ścieŜki dostępu do bibliotek (przykład biblioteki OpenCV).

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. śeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
12/18

10. Wybieramy panel opcji Linker -> Input i w polu Additional Dependencies podajemy

nazwy bibliotek, z których będziemy korzystać.

11. Wciskamy Zastosuj i OK.

Kompilacja, konsolidacja i uruchomienie

12. Dokonujemy kompilacji naszego programu, jego konsolidacji z bibliotekami oraz

uruchomienia. Środowisko programistyczne wykona wszystkie te etapy automatycznie, jeśli
wciśniemy guzik Run (zielony trójkącik).

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. śeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
13/18

13. Jeśli kod źródłowy lub projekt zawiera błędy wówczas program nie zostanie

uruchomiony. W tym przypadku w panelu Output środowiska pojawi się lista błędów

wykrytych w fazie kompilacji lub konsolidacji.

W linijce opisu błędu kompilacji występuje nazwa pliku, w którym wystąpił błąd, w nawiasie

numer kolejny linijki w tym pliku gdzie błąd występuje, słowo error (ang. błąd), numer błędu

oraz syntetyczny opis rodzaju błędu w języku angielskim. Przykład informacji o błędzie

kompilacji:

 1>Compiling...

...

 1>c:\...\projekta.cpp(11) : error C2660: 'cvLoadImage' : function does not take 3 arguments

PowiŜszy błąd wynika z nieprawidłowej liczby argumentów przekazywanych do funkcji

cvLoadImage.

W linijce opisu błędu konsolidacji występują słowa LINK i fatal error, numer/kod błędu oraz

syntetyczny opis rodzaju błędu w języku angielskim. Przykład informacji o błędzie

konsolidacji:

1>Linking...

...

1>LINK : fatal error LNK1104: cannot open file 'cxcore.lib'

PowiŜszy błąd wynika z tego, Ŝe nie podano katalogu zawierającego biblioteki w polu

Additional Library Directories opcji linkera.

14. Efektem prawidłowo działającego programu jest wyświetlenie okienka konsolowego oraz

okienka z obrazkiem.

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. śeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
14/18

Kod źródłowy
Struktura przykładowego programu jest bardzo prosta. Nie zawiera on dodatkowych funkcji

poza bibliotecznymi, nie zawiera teŜ pętli powodujących wielokrotne wykonanie fragmentów

kodu. Kolejność wywoływania i wykonywania poszczególny instrukcji lub funkcji jest więc

zgodna z ich kolejnością w tekście kodu źródłowego.

Pierwszych kilka linijek kodu odpowiedzialnych jest za dołączenie do tekstu programu tzw.

plików nagłówkowych bibliotek. W plikach nagłówkowych podane są informacje dotyczące

nazw funkcji dostępnych w bibliotece oraz liczby i rodzaju argumentów przyjmowanych

przez te funkcje. To dzięki opisowi (deklaracjom) funkcji zawartym w plikach nagłówkowych

kompilator „wie” w jaki sposób powinniśmy wywoływać funkcje w naszym programie.

#include "stdafx.h"

#include <cv.h>

#include <cxcore.h>

#include <highgui.h>

#include <cvaux.h>

#include <cvcam.h>

Dla przykładu otwórzmy plik nagłówkowy highgui.h. W pliku tym znajdziemy między

innymi deklarację funkcji cvLoadImage, która wygląda następująco

CVAPI(IplImage*) cvLoadImage(const char* filename, int iscolor

CV_DEFAULT(CV_LOAD_IMAGE_COLOR));

Jest to informacja dla kompilatora, Ŝe funkcja zwraca wskaźnik do obrazu w formacie

IplImage, ma nazwę cvLoadImage i przyjmuje dwa argumenty, pierwszy jest nazwą pliku

(filename) a drugi wartością całkowitą int o nazwie iscolor.

Program rozpoczyna działanie wywołanie funkcji main, _tmain lub WinMain. W naszym

przykładzie funkcja ta ma nazwę _tmain. Funkcja ta przyjmuje dwa argumenty. Ciało funkcji,

czyli instrukcje wykonywane przez program po wywołaniu tej funkcji, znajdują się pomiędzy

nawiasami {}.

int _tmain(int argc, _TCHAR* argv[])

{

...

}

Wewnątrz ciała funkcji umieszczone są w kolejnych linijkach definicje zmiennych oraz

nazwy funkcji, które maja zostać wywołane. Poszczególne linijki kończą znaki średnika.

W pierwszej linijce funkcji _tmain deklarowany jest wskaźnik do obrazu typu IplImage o

nazwie img. O tym, Ŝe ma to być wskaźnik decyduje symbol gwiazdki *. Wskaźnik określa

miejsce w pamięci komputera, w którym znajduje się interesujący nas rodzaj danych (tutaj

jest to obraz). UŜywanie wskaźników pozwala przyspieszyć działanie programu, np. zamiast

kopiować duŜy obraz w celu przekazania go innej funkcji, prościej jest przekazać tej funkcji

informację (wskaźnik), w którym miejscu pamięci ten obraz się znajduje.

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. śeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
15/18

IplImage *img = cvLoadImage("D:\\obrazek.bmp", 1);

Funkcja cvLoadImage zajmuje (alokuje) w pamięci komputera odpowiednio duŜo miejsca na

wpisanie tam obrazka. Następnie odczytuje obraz z pliku o podanej nazwie i kopiuje go do

zaalokowanej pamięci. Funkcja zwraca informację o miejscu w pamięci gdzie został wpisany

obraz. Informacja ta jest wpisywana za pomocą znaku przypisania „=” do wskaźnika img.

Funkcja cvLoadImage przyjmuje dwa argumenty. Pierwszym jest nazwa pliku z obrazkiem

(plik ten musi być zapisany na dysku komputera) oraz parametr sterujący kolorem

ładowanego obrazka. NaleŜy zwrócić uwagę na podwojony ukośnik w nazwie pliku.

Pojedynczy ukośnik jest w językach C i C++ traktowany jako znak sterujący. Aby kompilator

wiedział, Ŝe chodzi o ukośnik a nie znak sterujący, ukośnik naleŜy zdublować. Drugi

argument funkcji powoduje załadowanie obrazu w odcieniach szarości (gdy jest równy 0) lub

w kolorach (gdy jest równy 1).

Kolejne funkcje programu tworzą okienko o nazwie „Obrazek”,
 cvNamedWindow("Obrazek", 1);

Wyświetlają obrazek wskazywany przez wskaźnik img w okienku „Obrazek”,
 cvShowImage("Obrazek", img);

Oczekują na wciśnięcie klawisza,
 cvWaitKey(0);

Zwalniają pamięć zaalokowaną dla obrazka. Od tego momentu wskaźnik img nie powinien

być wykorzystywany.
 cvReleaseImage(&img);

Kończą działanie programu.
 return 0;

Zadania A
1. Sprawdź jak zaleŜy działanie programu od drugiego parametru funkcji cvLoadImage.

2. Załaduj inny obrazek zmieniając pierwszy argument tej funkcji.

3. Zmień nazwę okienka modyfikując pierwsze argumenty funkcji cvNamedWindow i

cvShowImage.

Dokumentacja funkcji OpenCV
Aby sprawnie wykorzystywać funkcje biblioteczne naleŜy zapoznać się z poszczególnymi

funkcjami, zrozumieć ich sposób działania i cel wykonywane przez nie operacji.

Dokumentacja biblioteki OpenCV w języku angielskim dostępna jest na stronie:

http://opencv.willowgarage.com/wiki/FullOpenCVWiki

Opisy poszczególnych funkcji, pogrupowanych pod kątem ich funkcjonalności i

przeznaczenia znajdują się na

http://opencv.willowgarage.com/documentation/index.html

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. śeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
16/18

Zadania B
1. W dokumentacji odszukaj informacje o funkcji do rysowania okręgu (cvCircle). Funkcja ta

naleŜy do grupy podstawowych (cxcore) słuŜących do rysowania. Dodaj tę funkcję w

odpowiednim miejscu programu tak, aby wynikiem działania programu było wyświetlenie

obrazka z dorysowanym niebieskim okręgiem. Aby skorzystać z funkcji konieczne jest

równieŜ wykorzystanie funkcji cvScalar i cvPoint.

Oczekiwany wynik działania programu:

2. Odszukaj informacje dotyczące funkcji filtrujących. Znajdź opis funkcji erozji cvErode.

Zmodyfikuj program tak, aby ładował obraz oryginalny, wyświetlał go, tworzył obraz będący

wynikiem erozji obrazu oryginalnego i wyświetlał go w osobnym okienku. Do stworzenia

drugiego obrazka moŜna wykorzystać funkcję cvCreateImage. Pierwszy argument tej funkcji

określa rozmiary nowego obrazka. Rozmiary te powinny być identyczne jak rozmiary obrazka

oryginalnego. MoŜna je uzyskać za pomocą funkcji cvSize(img->width, img->height), gdzie

img jest wskaźnikiem do obrazka oryginalnego.

Oczekiwany wynik działania programu:

3. Pobierz plik Exc2.bmp ze strony http://www.eletel.p.lodz.pl/pms/dyda_en.html. Napisz

program, który usunie z obrazka zakłócenia typu sól i pieprz oraz skoryguje jego histogram.

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. śeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
17/18

Do usuwania zakłóceń moŜna wykorzystać filtr medianowy wywoływany funkcją cvSmooth.

Do korekcji jasności i kontrastu obrazu moŜna wykorzystać funkcję cvConvertScale.

Oczekiwany wynik działania programu:

Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

90-924 Łódź, ul. śeromskiego 116, tel. 042 631 28 83, www.kapitalludzki.p.lodz.pl
18/18

Rozwiązania B
1.
int _tmain(int argc, _TCHAR* argv[])

{

 IplImage *img = cvLoadImage("D:\\obrazek.bmp", 1);

 cvCircle(img, cvPoint(100, 100), 36, cvScalar(255, 0, 0), 4);

 cvNamedWindow("Obrazek", 1);

 cvShowImage("Obrazek", img);

 cvWaitKey(0);

 cvReleaseImage(&img);

 return 0;

}

2.
int _tmain(int argc, _TCHAR* argv[])

{

 IplImage *img = cvLoadImage("D:\\ala.bmp", 1);

 IplImage* wynik = cvCreateImage(cvSize(img->width, img->height),

IPL_DEPTH_8U, 3);

 cvErode(img, wynik, NULL, 5);

 cvNamedWindow("Obrazek", 1);

 cvNamedWindow("Wynik", 1);

 cvShowImage("Obrazek", img);

 cvShowImage("Wynik", wynik);

 cvWaitKey(0);

 cvReleaseImage(&img);

 cvReleaseImage(&wynik);

 return 0;

}

3.
int _tmain(int argc, _TCHAR* argv[])

{

 IplImage* orygn = cvLoadImage("D:\\Exc2.bmp", 1);

 IplImage* posrd = cvCreateImage(cvSize(orygn->width, orygn->height),

IPL_DEPTH_8U, 3);

 IplImage* wynik = cvCreateImage(cvSize(orygn->width, orygn->height),

IPL_DEPTH_8U, 3);

 cvSmooth(orygn, posrd, CV_MEDIAN);

 cvConvertScale(posrd, wynik, 8, 0);

 cvNamedWindow("Obrazek", 1);

 cvNamedWindow("Wynik", 1);

 cvShowImage("Obrazek", orygn);

 cvShowImage("Wynik", wynik);

 cvWaitKey(0);

 cvReleaseImage(&orygn);

 cvReleaseImage(&posrd);

 cvReleaseImage(&wynik);

 return 0;

}

