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Sieci neuronowe ze sprzężeniem zwrotnymSieci neuronowe ze sprzężeniem zwrotnym

• Typowa architektura sieci neuronowych – nieregularna struktura o rozbudowanych  
połączeniach o nieregularnej organizacji

Wejścia Wejścia

Sprzężenie zwrotneSprzężenie zwrotne

• Sprzężenie zwrotne – fundament autonomicznego przetwarzania informacji
– obecność pobudzenia nie jest konieczna dla generacji sekwencji odpowiedzi
– nowy element opisu struktury: stany wewnętrzne
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Sieci neuronowe ze sprzężeniem zwrotnymSieci neuronowe ze sprzężeniem zwrotnym

• System posiadający stany wewnętrzne: bogaty repertuar zachowań (złożone relacje 
między stymulacją a odpowiedzią, zależne od stanu)
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• Zachowanie układu ze sprzężeniem zwrotnym
– sekwencja zmian stanów: przyjęcie kolejnego stanu to funkcja stanu 

poprzedniego i pobudzenia
– odpowiedź może zależeć od stanu i pobudzenia (automat Mealy’ego) lub 

wyłącznie stanu (automat Moore’a)



Sztuczna inteligencja, Sztuczne sieci neuronowe

4

Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Sieci neuronowe ze sprzężeniem zwrotnymSieci neuronowe ze sprzężeniem zwrotnym

• Dynamika systemu:
– System może posiadać stany stabilne (takie, które nie ulegają zmianie)
– Stany niestabilne (system zawsze opuści taki stan)
– System może ‘wędrować’ między stanami dowolnie długo, rozmaitymi drogami, 

nawet pod nieobecność pobudzenia (przy braku zmian pobudzenia) 

• Działanie sieci neuronowych ze sprzężeniem zwrotnym: wędrówka między stanami 
stabilnymi, kierunkowana przez bodźce zewnętrzne

• Stany stabilne sieci neuronowej odpowiadają dowolnym kluczowym etapom / 
elementom funkcjonowania sieci: rozumowanie (etapy wnioskowania, konkluzja), 
przypominanie (obrazy, sceny, melodie)

• Odpowiednio wyuczone lub wrodzone sekwencje stanów niestabilnych mają 
kluczowe znaczenie dla realizacji czynności fizjologicznych (np. pobudzanie 
elektryczne węzła zatokowego) czy motorycznych
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Sieci neuronowe ze sprzężeniem zwrotnymSieci neuronowe ze sprzężeniem zwrotnym
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Sieci neuronowe ze sprzężeniem zwrotnymSieci neuronowe ze sprzężeniem zwrotnym

• Uczenie sieci neuronowych ze sprzężeniem 
zwrotnym

– zapewnienie istnienia odpowiednich 
stanów stabilnych

– zapewnienie istnienia odpowiednich 
sekwencji zmian stanów InputInput

• Zagadnienie niezwykle skomplikowane z uwagi na stopień złożoności systemów 
nerwowych, nie dających się w ogólnym przypadku ująć w żadne reguły

• Możliwości analizy: uproszczenia struktur sieci
– architektura Hopfielda
– sieci ze wsteczną propagacją sygnałów,
– …
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Sieci HopfieldaSieci Hopfielda

• Architektura:
– każdy element jest połączony z wyjściami wszystkich pozostałych neuronów
– nie istnieje ‘własne’ sprzężenie zwrotne (wyjście neuronu nie jest podawane na 

jego wejście
– wagi są symetryczne (wij = wji)
– funkcja wyjścia neuronu to funkcja typu „znak”
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Sieci HopfieldaSieci Hopfielda

• Zasada korekt wag neuronu: reguła Hebba
– wagi neuronu to wynik kumulacji korekt wywołanych przez próbki zbioru 

treningowego 

T - liczebność zbioru 
treningowego
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• Funkcja wyjścia wymusza binarną dziedzinę przetwarzania 

...

1 1 1 1-1 -1 -1 -1 ...

yα

1  -1  1  -1  -1  1  1  -1



Sztuczna inteligencja, Sztuczne sieci neuronowe

9

Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Sieci HopfieldaSieci Hopfielda

• Trening sieci Hopfielda

yi
α =  f (wT xi ) = f (wT yi ) Odpowiedź neuronu α dla i-tej kombinacji wyjść:
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Sieci HopfieldaSieci Hopfielda

• Analiza stabilności sieci

Załóżmy, że yi jest jedynym wektorem zbioru treningowego
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Wyjście neuronu nie ulega zmianie
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Sieci HopfieldaSieci Hopfielda

• Analiza stabilności sieci

Załóżmy, że yi jest jednym z wektorów zbioru treningowego

||||0 ii ycCycC αα ⋅<∨>⋅⋅ 1

iii yCcyh ααα ∝+=

Wyjście neuronu nie ulega zmianie
Rozkład “i” jest stabilny
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Dynamika zmian stanów w sieciach HopfieldaDynamika zmian stanów w sieciach Hopfielda

• Analiza zachowania sieci znajdującej się w stanie niestabilnym:
– bieżący stan sieci to dowolny rozkład nie należący do zbioru treningowego –

jakie zmiany będą zachodzić w sieci?

y1 y2

w12 = w21= a

E = -Σij wij yi yj = -w12 y1 y2 - w21 y2 y1

Dana jest sieć Hopfielda:

Rozważmy wyrażenie:

Przykład

y1 y2 E

-1 -1 -2a

-1 1 2a

1 -1 2a

1 1 -2a
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Dynamika zmian stanów w sieciach HopfieldaDynamika zmian stanów w sieciach Hopfielda

• Stabilność stanów sieci – przykład

y1 y2

Stan I

y1 y2

Stan II

y1 y2

Stan III

y1 y2

Stan IV

w12 = w21= aE = -Σij wij yi yj = -w12 y1 y2 - w21 y2 y1

y1 y2 a>0 E (a=1) a<0 E (a=-1)

-1 -1 Stabilny -2 Niestabilny 2

-1 1 Niestabilny 2 Stabilny -2

1 -1 Niestabilny 2 Stabilny -2

1 1 Stabilny -2 Niestabilny 2
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Dynamika zmian stanów w sieciach HopfieldaDynamika zmian stanów w sieciach Hopfielda

• Ilościowy opis zmiany stanów
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Dynamika zmian stanów w sieciach HopfieldaDynamika zmian stanów w sieciach Hopfielda

• Ilościowy opis zmiany stanów

yα =  - yα’Różnica między stanami I i II
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Zmiana wartości E dla przejścia między stanami I i II

• Zmiana stanów polegająca na zmianie wartości wyjściowej jednego neuronu na 
wartość przeciwną jest opisana wyrażeniem:

– o postaci iloczynu
– jeden z czynników to wartość oryginalnej wartości wyjściowej
– pozostałe to wyrażenie określające poziom aktywacji neuronu
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Dynamika zmian stanów w sieciach HopfieldaDynamika zmian stanów w sieciach Hopfielda

• Ilościowy opis zmiany stanów
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• Wyjście neuronu ulega zmianie jeśli jest niezgodne z wypadkowym pobudzeniem 
(rozważana zmiana stanów to wynik pojawienia się innego niż poprzednio 
pobudzenia neuronu)
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Dynamika zmian stanów w sieciach HopfieldaDynamika zmian stanów w sieciach Hopfielda

• Ilościowy opis zmiany stanów

Ilościowy deskryptor zmiany stanu
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• Zmiana stanu w rozważanej sieci jest spontaniczna
– nowe łączne pobudzenie neuronu wymusza zmianę wartości wyjściowej

• Wartość deskryptora E, opisującego nowy stan jest mniejsza niż w przypadku stanu 
poprzedniego (każda spontaniczna zmiana stanu powoduje zmniejszenie wartości E)

• Deskryptor E – energia sieci

• Stan stabilny odpowiada lokalnemu minimum energii sieci
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Dynamika zmian stanów w sieciach HopfieldaDynamika zmian stanów w sieciach Hopfielda

• Jeżeli stan nie jest stabilny nastąpi jego zmiana na stan o niższej energii

• Zmiany stanów następują aż do momentu uzyskania stanu o minimalnej energii

• Stany używane do treningu sieci mogą (ale nie muszą) być stanami stabilnymi sieci

• Podstawowe funkcje sieci neuronowych ze sprzężeniem zwrotnym:
– wnioskowanie
– pamięci asocjacyjne (skojarzeniowe)
– optymalizacja

• Wnioskowanie i rozumowanie – funkcja nie wdrożona w żadnym z zaproponowanych 
modeli sztucznej sieci neuronowej
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Pamięci asocjacyjnePamięci asocjacyjne

• Układy przechowujące zapamiętane wcześniej wzorce
– zapamiętywanie następuje w procesie uczenia sieci
– przypominanie wymaga prezentacji fragmentu oczekiwanego rezultatu

Faza uczenia

Obrazy do wyuczenia

....
Sieć neuronowa

....

Faza przypominania

Sieć neuronowa‘klucz’
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Pamięci asocjacyjnePamięci asocjacyjne

• Układy przechowujące zapamiętane wcześniej wzorce
– zapamiętywanie następuje w procesie uczenia sieci
– przypominanie wymaga prezentacji fragmentu oczekiwanego rezultatu
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OptymalizacjaOptymalizacja

• Idea podejścia: wykorzystanie automatycznego procesu minimalizacji energii
– konieczne wyrażenie funkcji kryterialnej (minimalizowanej) jako wyrażenia 

opisującego energię sieci = zbudowanie sieci o odpowiedniej strukturze
– przedmiotem minimalizacji jest kombinacja liniowa iloczynów: znane wagi 

neuronów, nieznane – parametry kombinacji liniowej

Pamięci asocjacyjne Optymalizacja

Ustaw wagi** sieci 
i określ strukturę jej połączeń

Wymuś stan początkowy -
rozwiązaniem problemu jest 

wynik * przetwarzania

*) szukane, **) dane

Trenuj sieć (wagi*) by
zapamiętać wzorce

Wymuś stan początkowy -
oczekiwany stan stabilny
to zapamiętany rozkład**

*) szukane, **) dane
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OptymalizacjaOptymalizacja

• Utworzenie sieci o funkcji energetycznej odpowiadającej minimalizowanemu 
kryterium

Określ wagi i strukturę połączeń ....
2.3

-0.3

-0.1

0.3

-1
3

• Przetwarzanie: sieć samoistnie przekształci stan początkowy (domniemane 
rozwiązanie) w stan stabilny (który być może odpowiada minimum globalnemu funkcji 
kryterialnej

....2.3

-0.3

-0.1

0.3

-1
3 ....2.3

-0.3

-0.1

0.3

-1
3

• Uzyskanie rozwiązania jest błyskawiczne
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OptymalizacjaOptymalizacja

• Przykładowe zadanie – problem podróżującego sprzedawcy:
– znaleźć najkrótszą drogę pozwalającą odwiedzić n-miast (dokładnie jeden raz), 

znając odległości między miastami

Łódź

Piątek

Rzym

Chreptiów

Czeskie 
Budziejowice

Pacanów

Casablanc
a

MombasaRio
Dziedzina problemu

• Problem znany jako NP-zupełny
– złożoność obliczeniowa dla n-miast jest rzędu n!
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Problem podróżującego sprzedawcyProblem podróżującego sprzedawcy

• Próba rozwiązania przy użyciu sieci neuronowej
– określenie kryterium ilościowego, które można wyrazić jako energię odpowiednio 

zbudowanej sieci neuronowej

∑∑=
i j

ijdE1
i,j - indeksy 
miast 

Możliwa funkcja celu (energia): całkowita długość drogi

RioŁChCB... ...

...

...

: : : :

: : : :
Pacanów 1 0.8 0.6 0.90.7

Rio 1 0.8 0.8 0.90.2
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Struktura sieci (2D)
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Problem podróżującego sprzedawcyProblem podróżującego sprzedawcy

• Ograniczenia
– nie można odwiedzić danego miasta więcej niż jeden raz

∑ ∑ ⎥
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⎤
⎢
⎣

⎡
−+=

i k
iknEE 2

12 )1( ‘k’-ty przystanek w mieście “i”: 
nik = nik+1, nik(0)=1

Nowa postać kryterium:
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1 2 3
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-1 -1

-1

-1

-1

-1

-1-1

-1

Nowe połączenia między 
neuronami – modelowanie 
nowego elementu kryterium



Sztuczna inteligencja, Sztuczne sieci neuronowe

26

Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Problem podróżującego sprzedawcyProblem podróżującego sprzedawcy

• Ograniczenia
– nie można odwiedzić dwóch miast jednocześnie

∑ ∑ ⎥
⎦
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⎢
⎣

⎡
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j l
jlmEE 2

2 )1(
powtórzenie na przystanku “j”: 
mlj =mlj+k, mlj(0)=1, k – np. 5Nowa postać kryterium:
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Problem podróżującego sprzedawcyProblem podróżującego sprzedawcy

• Ostateczna struktura sieci
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