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PRZEKSZTAŁCENIA GLOBALNE OBRAZUPRZEKSZTAŁCENIA GLOBALNE OBRAZU
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Przekształcenia globalne obrazuPrzekształcenia globalne obrazu

• przekształcenie obrazu do innej dziedziny, zwanej widmem obrazu:
np. przekształcenie Fouriera, Hougha, Karhunena-Loevego,…

Cele: obrazowanie treści niewidocznych w dziedzinie przestrzennej obrazu,
przetworzenie do postaci bardziej dogodnej do kompresji (JPEG),
projektowanie filtrów obrazu w dziedzinie widma.

• przekształcenia geometryczne obrazu:

Cele: redukcja zniekształceń geometrycznych obrazu, 
powiększanie i zmniejszanie obrazu, 
przesunięcia i obroty obrazu.
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Szereg FourieraSzereg Fouriera

Joseph Fourier
(1768-1830)

Szeroka klasa sygnałów może być reprezentowana za pomocą 
kombinacji liniowej funkcji harmonicznych o różnych 
częstotliwościach – tzw. szereg Fouriera



P. Strumiłło, Wstęp do komputerowej analizy obrazów (5)

5

Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Wybieranie tonowe (DTMF - Dual Tone Multi Frequency)Wybieranie tonowe (DTMF - Dual Tone Multi Frequency)
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Powtórka: Iloczyn skalarny wektorówPowtórka: Iloczyn skalarny wektorów

φcosBABA =⋅

o900 ==⋅ φdlaBA

o1800 =<=⋅ φdlaminBA

A

B

φ

tj. dla wektorów prostopadłych (ortogonalnych) 

o00 =>=⋅ φdlamaxBA

Iloczyn skalarny 
wektorów jest liczbą!
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Wektory bazoweWektory bazowe

1== ba
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Problem: Chcemy przedstawić 

dowolny wektor C na płaszczyźnie 

za pomocą wektorów bazowych 

a i b o jednostkowych długościach

ba
rr

⊥

Wektory prostopadłe (ortogonalne)
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Wektory bazoweWektory bazowe
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c.n.d. Kombinacja liniowa wektorów bazowych



P. Strumiłło, Wstęp do komputerowej analizy obrazów (5)

9

Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Wracamy do szeregu FourieraWracamy do szeregu Fouriera

Joseph Fourier
(1768-1830)

Szeroka klasa sygnałów może być reprezentowana za pomocą 
kombinacji liniowej funkcji harmonicznych o różnych 
częstotliwościach – tzw. szereg Fouriera

αi

współczynniki 
„rozwinięcia”

α1

.

.

Funkcje bazowe
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Idea dyskretnej reprezentacji (aproksymacji funkcji)Idea dyskretnej reprezentacji (aproksymacji funkcji)

∑
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=+++≈
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iinn ffffg

1

2211 αααα K

Rozważmy zagadnienie: daną funkcję g chcemy dobrze przybliżyć 

ważoną sumą pewnej liczby n prostszych funkcji fi :

Zwykle zbiór funkcji fi jest zadany, a naszym celem jest znalezienie 

takich współczynników αi , dla których uzyskamy najlepsze 

przybliżenie funkcji g za pomocą zadanej liczby n prostszych funkcji fi

Kombinacja liniowa 
funkcji bazowych
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Reprezentacja dowolnej funkcji za pomocą funkcji 
harmonicznych - szereg Fouriera - przykład

Reprezentacja dowolnej funkcji za pomocą funkcji 
harmonicznych - szereg Fouriera - przykład
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Reprezentacja dowolnej funkcji za pomocą funkcji 
harmonicznych - szereg Fouriera - przykład

Reprezentacja dowolnej funkcji za pomocą funkcji 
harmonicznych - szereg Fouriera - przykład
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A jak wyznaczyć współczynniki widma dla dowolnej funkcji 
(sygnału)?

A jak wyznaczyć współczynniki widma dla dowolnej funkcji 
(sygnału)?
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… a iloczyn skalarny funkcji?… a iloczyn skalarny funkcji?
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Zatem funkcje harmoniczne 
możemy nazwać (podobnie jak 
wektory bazowe) funkcjami 
bazowymi ortogonalnymi
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oraz:

Szereg Fouriera jest budowany ze zbioru funkcji harmonicznych 
ortogonalnych – też współczynniki łatwo policzyć

Szereg Fouriera jest budowany ze zbioru funkcji harmonicznych 
ortogonalnych – też współczynniki łatwo policzyć

Sposób wyliczenia 
współczynników 
zaproponowany 
przez Fouriera 

(iloczyny skalarne 
funkcji bazowych
i funkcji rozwijanej 

w szereg)
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Szereg Fouriera - przykładSzereg Fouriera - przykład
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Szereg Fouriera - przykładSzereg Fouriera - przykład
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Widmo Fouriera zapisu EKGWidmo Fouriera zapisu EKG
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Widmo Fouriera zapisu EKGWidmo Fouriera zapisu EKG
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Wykładnicza postać szeregu FourieraWykładnicza postać szeregu Fouriera
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Widmo Fouriera kosinusoidyWidmo Fouriera kosinusoidy
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Przenosimy się do dwóch wymiarówPrzenosimy się do dwóch wymiarów

FFT
|F(8,0)|

(0,0)

(N-1,0)

(0,N-1)

(N/2,0)

|F(-8,0)|

(0,-N/2)

(0,N/2)

(-N/2,0)

(N/2,-N/2)

(N/2,N/2)(-N/2,N/2)

(-N/2,-N/2)256x256

xT periodmin_ ∆= 2 jest max możliwą częstotliwością: u∆128

xT periodsin_ ∆= 32 jest 16x mniejszą częstotliwością tj.: u
u

∆=
∆

8
16

128
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Przenosimy się do dwóch wymiarówPrzenosimy się do dwóch wymiarów

FFT
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u

∆=
∆

8
16

128



P. Strumiłło, Wstęp do komputerowej analizy obrazów (5)

24

Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Uwaga! ... Formalny zapis przekształcenia dwuwymiarowego 
Fouriera w postaci wykładniczej

Uwaga! ... Formalny zapis przekształcenia dwuwymiarowego 
Fouriera w postaci wykładniczej
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Interesuje nas widmo amplitudowe obrazuInteresuje nas widmo amplitudowe obrazu
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Wszystkie wyświetlane obrazy widm są widmami amplitudowymi
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Obrót obrazu powoduje obrót o ten sam kąt jego widmaObrót obrazu powoduje obrót o ten sam kąt jego widma

FFT

FFT

f(r, θ + θ0) ⇔ F(ω, φ + θ0)
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Własność zmiany skaliWłasność zmiany skali

FFT

FFT

ℑ{f(ax,by)} = 

|ab|-1 F(u/a, v/b)
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Obraz i jego widmo amplitudoweObraz i jego widmo amplitudowe

FFT

tu skupia się ok. 90% 
energii obrazu

log(1+|F(u,v)|)

F(0,0)
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Filtr dolnoprzepustowyFiltr dolnoprzepustowy

IFFT

30

Wybieramy harmoniczne widma o małej (z dolnej) 
częstotliwości - obserwujemy „rozmycie” obrazu
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Filtr
dolno-
przepustowy

Filtr
dolno-
przepustowy
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Filtr górnoprzepustowy zdefiniowany w dziedzinie widmaFiltr górnoprzepustowy zdefiniowany w dziedzinie widma

IFFT

30

Usuwamy małe 
częstotliwości z obrazu

Informacja o 
krawędziach obrazu
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Filtr
górno-
przepustowy

Filtr
górno-
przepustowy
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Filtr pasmowoprzepustowy zdefiniowany w dziedzinie widmaFiltr pasmowoprzepustowy zdefiniowany w dziedzinie widma

IFFT

30

20

Filtr „wybiera” wąski zakres harmonicznych 
z widma obrazu 
(analogia do działania kamertonu, 
który również dźwięczy wg własnej częstotliwości)
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Maska filtra Laplace’a i jego charakterystyka widmowaMaska filtra Laplace’a i jego charakterystyka widmowa
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Maska filtra uśredniającego i jego charakterystyka widmowaMaska filtra uśredniającego i jego charakterystyka widmowa
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Splot obrazów a iloczyn ich widmSplot obrazów a iloczyn ich widm

FFT{f(x,y) g(x,y)} = F(u,v) ∗ G(u,v)

FFT{f(x,y) ∗ g(x,y)} = F(u,v) G(u,v)

Filtracje obrazu można realizować w dziedzinie widma mnożąc widmo 
obrazu przez charakterystykę filtru i wyznaczając odwrotne przekształcenie 
Fouriera wyniku filtracji
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Filtracja obrazu w dziedzinie widmaFiltracja obrazu w dziedzinie widma
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Usuwanie zakłóceń harmonicznych w dziedzinie widmaUsuwanie zakłóceń harmonicznych w dziedzinie widma

FFT
IFFT

oryginał
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Redukcja zakłóceń obrazuRedukcja zakłóceń obrazu

FFT

IFFT
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Przykład widma obrazuPrzykład widma obrazu

FFT
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Wykrywanie regularnych kształtów w obrazach zakłóconychWykrywanie regularnych kształtów w obrazach zakłóconych

+

FFT
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Koszt obliczeniowy przekształcenia FourieraKoszt obliczeniowy przekształcenia Fouriera
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W tzw. szybkim przekształceniu 
Fouriera (ang. Fast Fourier 
Transform – FFT) wykorzystuje 
się symetrie i okresowość funkcji 
wykładniczej
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PodsumowaniePodsumowanie

• Model sygnału budowany z bazowych funkcji harmonicznych -
analogia do wektorów bazowych

• Definicja szeregu trygonometrycznego i wykładniczego Fouriera
• Przykłady widma sygnałów jednowymiarowych
• Dwuwymiarowe przekształcenie Fouriera
• Przykłady widm obrazów i właściowości
• Interpretacja częstotliwościowa filtrów przestrzennych obrazu

• FFT (ang. Fast Fourier Transform)

Terminologia: Wynikiem transformacji Fouriera jest transformata Fouriera


